

Kopplungsbeschreibung EtherNet/IP

Kopplungsbeschreibung CPU 9442

für

IS1+ Feldstationen

Kopplungsbeschreibung EtherNet/IP

Inhalt

Н	torische Entwicklung der Remote I/O Technologie bei R. STAHL	4
1	Systemübersicht	5
2	Inbetriebnahme	
	2.1 Übersicht	6
	2.2 Systemvoraussetzungen	
	2.3 Projektierungsgrenzen	
	2.4 Kompatibilität der neuen IS1+ IO-Module	
	2.5 EtherNet/IP Netzwerk Topologie	
	2.5.1 Device Level Ring (DLR)	
	2.5.2 CPU Redundanz	11
	2.6 Adressierung und Protokollauswahl 9442 CPU	
	2.6.1 DP/RS485 + SB Adresseinstellung	
	2.6.2 Protokoll Auswahl	
	2.6.3 IP Adresseinstellung	IZ 12
	2.6.3.2 IS1+ Detect	
	2.6.3.3 IS1+ Webserver	
	2.7 Konfiguration des EtherNet/IP Scanners	
	2.7.1 Zyklische I/O Daten - Strukt 1: Wenige große Verbindungen	
	2.7.2 Zyklische I/O Daten - Strukt 2: Viele kleine Verbindungen	
	2.8 Systemanlauf	
	2.9 Online Umkonfiguration	
3	Datenverkehr	18
	3.1 Zyklische Daten (Implicid Messages)	
	3.1.1 Connections: EO IOM 1-4, IO IOM 1-4, LO IOM 1-4	
	3.1.2 Connections: EO IOM 1-12, IO IOM 1-12, LO IOM 1-12	
	3.1.3 Connections: EO IOM 13-16, IO IOM 13-16, LO IOM 13-16	
	3.1.4 Connections: EO STAT, IO STAT, LO STAT	
	3.1.5 Connections: EO IOM 1-2, EO IOM 15-16	
	3.1.6 Connections: IO Ext HART, LO Ext HART	
	3.2 CIP Common Klassen	
	3.2.1 Assembly / Parameter 9442 CPU Klasse 0x04	
	3.3 Daten Formate	
	3.3.1.1 Digital Input / Output Module – DIM, DIOM	
	3.3.1.2 Digital Output Module – DOM	20 27
	3.3.1.3 Analog Input / Output / Universal Modul – AIM / AOM / AUM / UMH	
	3.3.2 Signal Status	
	3.3.3 Modul Status	29
	3.3.4 CPU Status	
	3.3.5 Steuerregister CPU	
	3.3.6 HART Livelist	
	3.3.7 HART Variablen	
	3.3.7.1 Modul Auswahl im IS1 DTM	33
	3.3.7.2 Datenformat	
	3.3.7.3 Rangierte HART Variablen - HART IOMx	
	3.3.7.4 Erweiterte HART Variablen - Ext HART IOMx	
	RA Parametrierung der IS1+ Feldstation sowie der IO-Module	37

Kopplungsbeschreibung EtherNet/IP

	3.5 IS1 Parametersatz	
	3.5.1 CPU Parameter	38
	3.5.2 IO-Modul Parameter	39
	3.5.2.1 AIM / AIMH	39
	3.5.2.2 AUMH 9468/	40
	3.5.2.3 UMH 9469 Exn	
	3.5.2.4 TIMR 9480/	44
	3.5.2.5 TIM mV 9481/	45
	3.5.2.6 TIM 9482	
	3.5.2.7 DIM (9470/3x im kompatiblen Mode)	47
	3.5.2.8 DIOM 9470/3x (IS1+)	
	3.5.2.9 AOM / AOMH	
	3.5.2.10 DOM	
	3.6 Datenwortaufbau der I/O - Module	
	3.6.1 I/O - Baugruppen analog	
	3.6.1.1 AIM, AIMH (9460/, 9461/, 9468/, 9469/)	
	3.6.1.2 TIM (9480/, 9481/, 9482/)	
	3.6.1.3 AOM , AOMH (9465/ , 9466/, 9468/)	
	3.6.2 DIM, DIM+CF (9470/ 9471/ 9472/)	
	3.6.3 DOM (9475/, 9477/, 9478/)	
	3.7 Signalverhalten im Fehlerfall	
	3.7.1 Verhalten der Eingabesignale im Fehlerfall	
	3.7.2 Verhalten der Ausgabesignale im Fehlerfall	
	3.8 IS1 DTMs	
	3.9 Webserver der IS1+ CPU	
	3.10 Online Verhalten der IS1+ Feldstation.	
	3.10.1 Parameteränderungen	
	3.10.2 Konfigurationsänderungen	
	3.11 Übertragungszeit:	
	3.12 Technische Daten	
4	Liste der Abkürzungen:	
5	Versionsveränderungen:	
6	Literaturhinweise	
7	Support Adresse	70

Kopplungsbeschreibung EtherNet/IP

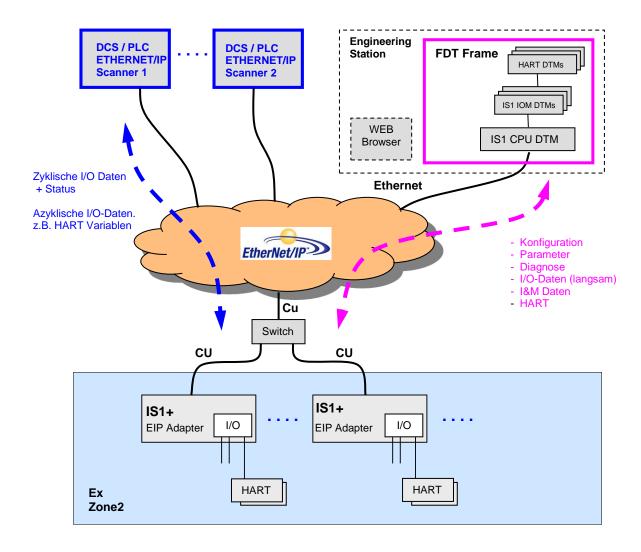
Historische Entwicklung der Remote I/O Technologie bei R. STAHL

Als einer der ersten Hersteller hat R. STAHL die Vorteile der Remote I/O Technologie für explosionsgefährdete Bereichen erkannt und entwickelt seit mittlerweile über 30 Jahren innovative Produkte und Lösungen. Im Fokus steht hierbei immer der Anwendernutzen: alle Kommunikations-, Versorgungs- und Ein-/Ausgabe-Baugruppen des Systems lassen sich im Betrieb im explosionsgefährdeten Bereich stecken und ziehen. Durch das eigensichere Systemdesign erfolgt die Installation fast wie im sicheren Bereich, es werden keine speziellen Ex d oder Ex p Gehäuse benötigt. Über Remote I/O lassen sich konventionelle und HART-fähige Feldgeräte einfach und kostensparend in moderne, digitale Netzwerkstrukturen einbinden. Umfangreiche Diagnosemöglichkeiten über einen separaten Servicebus oder den Prozessbus erlauben die Einbindung in moderne Plant Asset Management Systeme und erhöhen die Verfügbarkeit der Anlagen.

- R. STAHL bringt mit dem "Feldbus-System ICS MUX" als weltweit erster Hersteller ein eigensicheres Bussystem zur Erfassung und Ausgabe von Signalen im Ex-Bereich (Zone 1) auf den Markt. Die Ankopplung an Automatisierungssysteme erfolgt über ein in der Warte installiertes Regieendgerät. Die eigensichere Kommunikation zu den in Zone 1 installierten explosionsgeschützten Vorort- oder auch Feldstationen (VOS) erfolgt mittels eines einzigen Koaxialkabels.
- Auf der Basis von ICS MUX wird die Systemvariante "VOS 200" vorgestellt. Die "VOS 200" ist besser geeignet für kleinere Signalmengen oder dezentrale Automatisierungseinheiten, es ist kein Regieendgerät mehr erforderlich. Multi-Drop wird unterstützt und Kopplungen sind auch redundant möglich.
- "VOS 200" kann jetzt auch mit dem damals neuen PROFIBUS DP kommunizieren. Dafür entwickelte R. STAHL als erster eine eigensichere Ausführung, die heute mit ein paar Modifikationen als RS485-I.S. im PNO-Standard enthalten ist.
- 2000 Aus den Erfahrungen mit ICS MUX und VOS 200 entsteht ein vollkommen neues Remote I/O IS1. Das System ist deutlich flexibler und einfacher einsetzbar, dabei leistungsfähiger und extrem Kosten sparend. Im Laufe der Jahre entwickelt sich IS1 zum Marktführer in der Zone 1 und ist bis heute weltweit im Einsatz. IS1 unterstützt offene Busprotokolle wie PROFIBUS DP oder Modbus RTU und ist in unterschiedlichen Ausführungen für Zone 1, Zone 2 und sogar Division 1 und 2 verfügbar.
- 2009 IS1 wird um eine neue Kommunikationsbaugruppe für Ethernet erweitert. Damit ist IS1 das erste Remote I/O System, das in der Zone 1 an einem 100 Mbit/s Ethernet arbeitet. Als Kommunikationsmedium wird Lichtwellenleiter mit der Zündschutzart "op is" verwendet, unterstützte Protokolle sind Modbus TCP, EtherNet/IP und PROFINET.
- Die I/O-Ebene wird komplett modernisiert und als IS1+ auf den Markt gebracht. Die neuen multifunktionalen I/O-Module haben konfigurierbare Ein-/Ausgänge und eine innovative Diagnosefunktion, die potentielle Modul-Ausfälle bereits 12 Monate vorher meldet. IS1+ ist noch besser für extreme Umgebungsbedingungen von jetzt -40...+75 °C geeignet. Dabei sind die neuen IS1+ Module vollständig kompatibel zu ihren IS1 Vorgängern.
- Die neue Zone 2 Kopfbaugruppe bestehend aus CPU, Power Modul und Sockel macht IS1+ noch flexibler und vielfältiger einsetzbar. Die bisher unterstützten Protokolle PROFIBUS DP, Modbus TCP+RTU, EtherNet/IP und PROFINET werden jetzt alle von einer CPU unterstützt und sind vom Anwender auswählbar. Die neue Baugruppe hat die gleichen, vorausschauenden Diagnosefunktionen und den erweiterten Temperaturbereich von -40...75 °C wie die IS1+ Module.

Die nachfolgende Beschreibung zeigt die Systemeigenschaften des IS1+ Systems mit 9442 CPU bei Ankopplung an ein Automatisierungssystem über das EtherNet/IP Protokoll.

EtherNet/IP™ is a trademark used under license by ODVA



Kopplungsbeschreibung EtherNet/IP

1 Systemübersicht

Als komplett explosionsgeschützt aufgebaute Einheit wird die IS1+ Feldstation typischerweise direkt im explosionsgefährdetem Bereich (Zone 1 oder Zone 2) installiert. Eine Installation im sicheren Bereich ist ebenfalls möglich. Das obige Bild zeigt eine Zone 2 Lösung.

Die IS1+ Feldstation verhält sich in einem solchen Netzwerk hierarchisch als EtherNet/IP Adapter und verfügt über einen Ethernet LWL Anschluss (9441 CPU, Zone1) oder zwei Ethernet Kupfer Anschlüsse (9442 CPU, Zone2).

Die Konfiguration, Parametrierung, Diagnose und HART Kommunikation der Feldstation und deren I/O Module erfolgt mittels über FDT Technologie angebundene IS1 DTMs.

In den IS1+ CPUs ist ein Webserver integriert, welcher zusätzliche Diagnosemöglichkeiten bietet.

Kopplungsbeschreibung EtherNet/IP

2 Inbetriebnahme

2.1 Übersicht

Planung des gesamten EtherNet/IP Netzwerkes:

- Welche Master (EtherNet/IP Scanner) sind im Netz
- Welche Slaves (EtherNet/IP Adapter) sind im Netz
- Wahl der Netzwerk Topologie und Netzphysik (Switches, Repeater, Glasfaserstrecken ...)
- Eindeutige Vergabe der IP Adressen.

Inbetriebnahme durchführen:

- Mechanische Montage der IS1+ Feldstationen
- Mechanische Montage der Ethernet Switches
- Mechanische Montage aller weiteren Busteilnehmer
- Busverbindungen herstellen.
- Spannungsversorgung der IS1+ Feldstation herstellen.
- Spannungsversorgung der Switches und anderer Netzwerkkomponenten herstellen.
- IP-Adressen, Subnet Mask, Gateway ... an den IS1+ Feldstationen einstellen
- Adressen aller weiteren Teilnehmer einstellen.
- FDT Software und IS1 DTMs auf PC installieren
- IS1+ Feldstationen sowie deren IOM mittels der IS1 DTMs konfigurieren und parametrieren.
- EtherNet/IP Scanner Konfigurieren.
 EDS File (Electronic Data Sheet) in Konfigurator des Scanners einlesen und Datenverkehr zu IS1+ konfigurieren.
- EtherNet/IP Scanner in Betrieb setzen.
 Damit automatischer Anlauf der zyklischen Kommunikation.
- Verbindung auf Ethernet mittels folgender Hilfsmittel prüfen
 - LED's an Ethernet Switches
 - Link LED's der CPU der IS1+ Feldstation
 - "Ping" ausführen. Eine IS1+ CPU antwortet in jedem Zustand auf einen Ping.
- Kommunikation auf EtherNet/IP mittels folgender Hilfsmittel prüfen:
 - Diagnoseinformationen des EtherNet/IP Scanners bzw. dem Scanner zugehörigen Diagnosehilfsmittels.
 - LED's der IS1+ Feldstation sowie Textanzeige an der CPU der 9441 CPU
 - Webserver in IS1+ CPU
- E/A-Signale mittels folgender Hilfsmittel prüfen
 - Informationen des EtherNet/IP Scanners sowie dessen Diagnosehilfsmittel.
 - Diagnose mittels der Funktionen der IS1 DTMs.

Kopplungsbeschreibung EtherNet/IP

2.2 Systemvoraussetzungen

Hardwarevoraussetzungen:

• IS1+ Feldstation mit CPU 9442/35-10-00, Sockel 9496/.. und Power Modul PM 9445/..

Softwarevoraussetzungen:

IO Madula	IO-Modul	9442 CPU		IS1	
IO-Module Firmware		Firmware	EDS	DTM	
IS1 IOM	ab 02-00	ab V1.0.x	Abhängig von CPU Parameter 'Datenstruktur': Strukt 1: Wenige große Verbindungen	ab V3.0.13	
IS1+ IOM (94xx/3x)	ab 03-01	ab v 1.0.x	 -> ab STAHL_RIO9442_EIP_Struct1_01_01.eds Strukt 2: Viele kleine Verbindungen -> ab STAHL_RIO9442_EIP_Struct2_01_01.eds 	ab v3.0.13	

2.3 Projektierungsgrenzen

Für die Projektierung einer IS1+ Feldstation gelten die allgemeinen Regeln gemäß Betriebsanleitung IS1.

Mögliche Begrenzung durch EtherNet/IP Scanner:

- Speicher in Scanner für I/O Daten. Damit Begrenzung der möglichen Anzahl der IO-Module, sowie der maximalen Signalzahl.
- maximale Anzahl von Adaptern in einem Netzwerk

Die Grenzen der verwendeten EtherNet/IP Scanner sind daher bei der Projektierung ebenfalls zu beachten.

Kopplungsbeschreibung EtherNet/IP

2.4 Kompatibilität der neuen IS1+ IO-Module

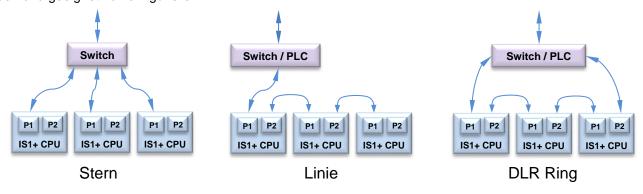
Neue IS1+ IOM können in bestehenden Anlagen bisherige IS1 IOM vollständig funktionskompatibel ersetzen. Eine Änderung der Projektierung ist in diesem Fall nicht erforderlich.

Erkennen die IS1+ IOM eine zulässige Projektierung der bisherigen IS1 IOM, so schalten diese in einen kompatiblen Mode und verhalten sich wie das bisher projektierte IOM.

Sollen Zusatzfunktionen der IS1+ IOM genutzt werden, welche über die Funktionen der bisherigen IOM hinausgehen, sind die neuen IS1+ IOM gemäß Ihrer neuen Typnummer zu projektieren.

Übersicht der kompatiblen IO-Module:

IS1 IC	-Module	Kompatibles IS1+ IO-Modul	Bemerkung
9460/12-08-11	AIM 8		-
9461/12-08-11	AIMH 8	0400/00 00 44 ALIMIL 7 4	-
9461/12-08-21	Alivin o	9468/32-08-11 AUMH Zone 1 9468/33-08-10 AUMH Zone 2	9164 zusätzlich erforderlich
9465/12-08-11	AOM 8	3400/33 00 10 AOMIT ZONE Z	-
9466/12-08-11	AOMH 8		-
9461/15-08-12	AIMH 8 Exn	0400/25 00 w/ UMIL 5va	-
9466/15-08-12	AOMH 8 Exn	9469/35-08-xx UMH Exn	-
9470/22-16-11	DIM 16	9470/32-16-11 DIOM Zone 1	-
9475/12-08-41	DOM 8	9470/33-16-10 DIOM Zone 2	Für Low Power Ventile
9470/25-16-12	DIM 16 Nam Exn	9471/35-16-xx DIOM Zone 2 Exn	-
9471/15-16-12	DIM 16 24V Exn	9472/35-16-xx DIOM 24V Exn	-
9471/10-16-11	DIM 16 24V	(ab IOM Firmware V03-06)	-
9475/12-04-11		9475/32-04-12 DOM Zone 1	-
9475/12-04-21	DOM 4	9475/32-04-22 DOM Zone 1	-
9475/12-04-31		-	Entfällt
9475/12-08-41		siehe oben 9470/3x DIOM	-
9475/12-08-51	DOM 8	9475/32-08-52 DOM Zone 1 9475/33-08-50 DOM Zone 2	-
9475/12-08-61		9475/32-08-62 DOM Zone 1 9475/33-08-60 DOM Zone 2	-
9475/22-04-21	DOM 4 OD	9475/32-04-22 DOM Zone 1	-
9475/22-08-51	DOM 8 OD	9475/32-08-52 DOM Zone 1	-
9475/22-08-61	DOINI 9 OD	9475/32-08-62 DOM Zone 1	-
9480/12-08-11	TIM R	0492/2y 09 yy 97IM	-
9481/12-08-11	TIM mV	9482/3x-08-xx 8TIM	-



Kopplungsbeschreibung EtherNet/IP

2.5 EtherNet/IP Netzwerk Topologie

Die IS1+ 9442 CPU verfügt über zwei Ethernet Ports (Anschüsse X2, P1 sowie X2, P2) welche über einen Ethernet Switch intern verbunden sind. Damit ist es möglich, Ethernet Stern-, Linien- (Daisy Chain) sowie DLR Ring topologien aufzubauen (Device Level Ring).

Zum Aufbau von Ringstrukturen sind DLR fähige Komponenten gemäß EtherNet/IP Spezifikation zu verwenden und geeignet zu konfigurieren.

Maintenance Hinweis: Während einem Software Update einer 9442 CPU wird der interne Switch und der Port P2 der 9442 CPU deaktiviert. Über Port P2 nachgeschaltete Netzwerk Teilnehmer sind in dieser Betriebsphase daher nicht erreichbar.

2.5.1 Device Level Ring (DLR)

Die 9442 CPU unterstützt Announce-based Device Level Ring (DLR) als DLR Client (Node).

Voraussetzungen für den störungsfreien Betrieb eines Device Level Rings (DLR)

- Bei DLR Ringtopologien ist die zulässige Geräte Anzahl je Ring begrenzt (z. B. typisch 50 Geräte).
 Details siehe Betriebsanleitung des DLR Ring Supervisors.
 Eine Überschreitung der Geräteanzahl kann zum Ausfall des Datenverkehrs oder zu erhöhten Umschaltzeiten im Fehlerfall führen.
- Der Ring, in dem Sie DLR einsetzen wollen, darf nur aus Geräten bestehen, die diese Funktion unterstützen.

Schließen Sie Geräte ohne DLR Support nicht direkt an ein DLR-Netzwerk an.

- Alle Geräte müssen über ihre Ringports miteinander verbunden sein.
- Bei allen Geräten im Ring muss "DLR" aktiviert sein alle Geräte als "DLR Client" außer einem Gerät mit der Rolle "Ring Supervisor". Optional können Back-up-Supervisor verwendet werden.
- Die IS1+ 9442 CPU besitzt die Rolle "DLR Client".
- Rekonfigurationszeit eines Announce-based DLR Rings nach Fehler: typ. ms

Kopplungsbeschreibung EtherNet/IP

Regel zum Laden der Geräte eines DLR Rings

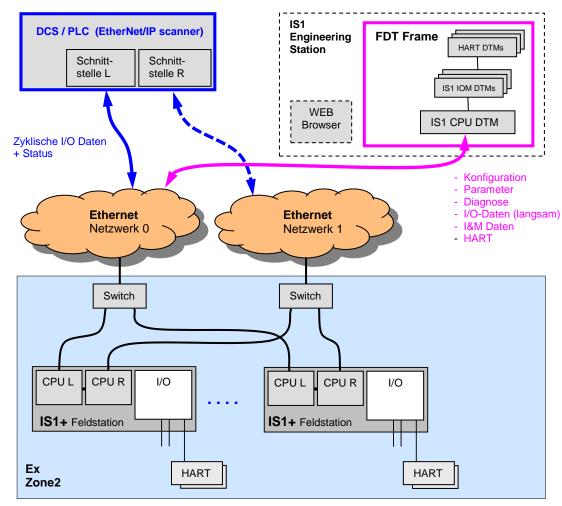
- Beim Laden von Geräten eines DLR Rings kann es zu kreisenden Frames und damit zum Ausfall des Netzwerks kommen, wenn eine ungültige DLR-Projektierung vorliegt.
- Beispiel: Sie ändern die DLR-Rollen von mehreren Geräten und laden nacheinander die Konfiguration in die beteiligten Geräte. Es können Konfigurationen entstehen, die den oben genannten Regeln widersprechen.
- Damit eine ungültige DLR-Konfiguration nicht zu einem Ausfall des Netzwerks führt, lösen Sie vor dem Laden den Ring.
- Gehen Sie folgendermaßen vor:
 - 1. Lösen Sie den Ring.
 - 2. Laden Sie die fehlerfreie und konsistente DLR-Projektierung aus Ihrem Projekt in alle beteiligten Geräte und stellen Sie sicher, dass sich die Geräte im Datenaustausch befinden.
 - 3. Schließen Sie den Ring.

DLR und Realtime (RT)

RT-Betrieb ist bei der Verwendung von DLR möglich. Während der Rekonfigurationszeit des Rings nach einem Fehler werden die I/O Daten eingefroren.

Achtung! Wählen Sie die Ansprechüberwachungszeit der IO-Devices ausreichend groß. Tylisch >= 200 ms.

Die RT-Kommunikation wird unterbrochen (Stationsausfall), wenn die Rekonfigurationszeit des Rings größer als die gewählte Ansprechüberwachungszeit der IO-Devices ist.


Kopplungsbeschreibung EtherNet/IP

2.5.2 CPU Redundanz

Redundante IS1+ CPUs können an EtherNet/IP Scannern betrieben werden welche folgende Funktion unterstützen:

- Vom EtherNet/IP Scanner werden zu beiden IS1+ 9442 CPUs einer IS1+ Feldstation identische zyklische Verbindungen aufgebaut.
- Eingangsdaten werden von beiden IS1+ CPUs gelesen. Maximales Delay der Eingangsdaten beider CPUs ca. 10 ms.
- Identische Ausgangsdaten sind vom EtherNet/IP Scanner zu beiden IS1+ CPUs zu schreiben.
- Beim Ausfall einer Verbindung wird die verbleibende verfügbare Verbindung verwendet.

Beispiel: Redundante Ethernet Netzwerke

Bei Verwendung von nur einem Ethernet Netzwerk (nicht redundant oder Medienredundant über DLR Ring) sind die IP Adressen beider CPUs einer IS1+ Feldstation unterschiedlich einzustellen.

Anbindung der IS1+ Engineering Station:

Die IS1+ Engineering Station wird an eine der beiden 9442 CPUs angebunden. Konfigurations- Parameter und Diagnosedaten, sowie Input- und Outputdaten beider CPUs werden zwischen den CPUs abgeglichen und stehen im DTM zur Verfügung.

Parametrierung

Für redundanten Betrieb einer IS1+ Feldstation mit zwei 9442 CPUs ist in der Parametrierung der CPU in den IS1 DTMs der Parameter 'CPU Redundant = Ja' zu wählen. Damit wird die Synchronisation und Überwachung redundanter CPUs aktiviert.

Kopplungsbeschreibung EtherNet/IP

2.6 Adressierung und Protokollauswahl 9442 CPU

2.6.1 DP/RS485 + SB Adresseinstellung

Für die Protokolle PROFIBUS sowie STAHL Servicebus über USB/RS485 wird von der 9442 CPU eine gemeinsame Stationsadresse verwendet, welche über zwei Drehschalter S2, S3 auf dem ersten IS1+ Sockel (Bank 0) einstellbar ist.

Die Schalter befinden sich unter der linken CPU.

Dies hat den Vorteil, dass die Schalter während des Betriebs nicht versehentlich verändert werden können. Eine Übernahme von veränderten Schalterstellungen erfolgt immer erst nach CPU Boot.

Adressbereich (0-99)

Eingestellte Adresse = S2 x 10 + S3

2.6.2 Protokoll Auswahl

Das zu verwendende AS Protokoll wird bei der 9442 CPU per Drehschalter S1 im Sockel fest gewählt. Damit bleibt die AS Protokoll Auswahl und Adresse bei CPU Tausch erhalten. Nach Veränderungen der Protokoll Auswahl sind zum Protokoll passende Konfigurations- und Parameter Daten zu erstellen und in die IS1+ Feldstation zu laden.

AS-Protokoll	Schalter Stellung S1
Reserved	0
PROFIBUS PNO Red.	1
PROFIBUS Stahl Red. Addr. Offs. 1	2
PROFIBUS Stahl Red. Addr. Offs. 0	3
PROFINET	4
Reserved	5
Modbus TCP	6
EtherNet/IP	7
Reserved	8
Reserved	9

2.6.3 IP Adresseinstellung

Die 9442 IS1+ CPU verwendet für die Ethernet Kommunikation zwei separate IP Adressen:

- IP-AS: EtherNet/IP Realtime Bus zu Automatisierungs-Systemen
- IP-SB: Service Bus Funktionen: Web-Server, IS1-DTM, HART, Standard TCP Traffic, SW-Update

Durch diese Trennung der IP Adressen wird eine verbesserte Unabhängigkeit der verschiedenen Datenströme erreicht auch wenn beide Datenströme über dieselben Ethernet Ports ablaufen.

Eine Veränderung der IP-Adressen ist während aktivem Data Exchange zum Automatisieungsgerät gesperrt.

Achtung! IP-AS und IP-SB Adressen sowie Gerätenamen einer CPU müssen wie alle Adressen eines Ethernet Netzwerkes einmalig und eindeutig sein!

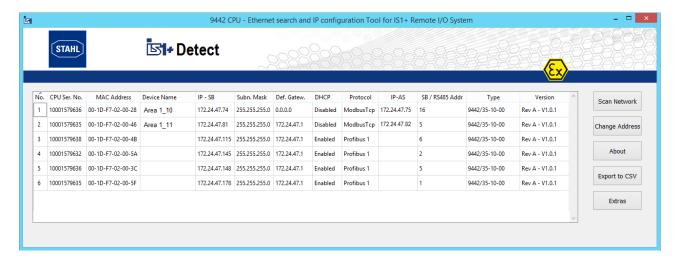
Es ist zu beachten, dass auch die IP-Adressinformationen im Sockelspeicher der IS1+ CPU gespeichert werden. Bei Austausch von CPUs bleiben Konfigurations- und Adressinformationen einer IS1+ Feldstation daher erhalten.

Kopplungsbeschreibung EtherNet/IP

2.6.3.1 IP-AS Adresse der IS1+ Feldstation

Für die Adressierung einer IS1+ Feldstation sind folgende Angaben notwendig:

- IP Adresse
- SubNet Maske
- optional: Gateway


Die Einstellung der Adressen einer IS1+ Feldstation kann erfolgen über:

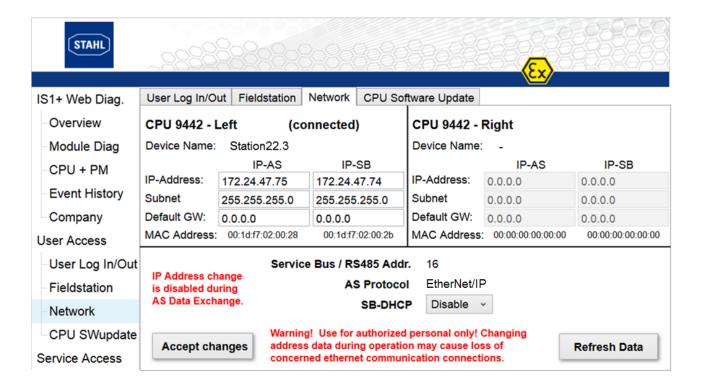
- IS1+ Detect Tool
- IS1+ Webserver
- DHCP Server

2.6.3.2 IS1+ Detect

Mittels des Tools 'IS1+ Detect' kann eine Liste der physikalisch über Ethernet erreichbaren IS1+ Feldstationen mit 9442 CPU erstellt werden und die bisher eingestellten IP Adressen der gefundenen Stationen angezeigt werden. Dies gilt auch für IS1+ Stationen welche außerhalb des über IP adressierbaren Netzwerk Adressbereiches liegen.

Bei Bedarf können die IP-SB Adressen über das Tool verändert werden, so dass diese nachfolgend im adressierbaren IP Adressraum des Netzwerkes liegen. Damit sind die IS1+ Stationen über die integrierten Web Server erreichbar.

Kopplungsbeschreibung EtherNet/IP


2.6.3.3 IS1+ Webserver

Die Einstellung der IP-AS Adresse für die EtherNet/IP Schnittstelle sowie der IP-SB Adresse kann optional über den Webserver der 9442 CPU erfolgen.

Bei redundanten IS1+ CPUs werden die Adressen IP-AS, IP-SB sowie die Device Namen beider CPUs (linke- und rechte CPU) im IS1+ Webserver angezeigt wobei der Web Server mit einer der beiden CPUs verbunden ist (connected).

Die IP-SB sowie IP-AS Adressen können mit gültigem User Login nur von der CPU verändert werden, mit welcher der Webserver aktuell verbunden ist. Eine Änderung ist nur möglich, wenn sich die IS1+ CPU nicht im DataExchange mit einem AS befindet und DHCP disabled ist.

Eine bestehende Verbindung zum Webserver wird nach einer Änderung der IP-SB geschlossen und muss zu der geänderten IP-SB Adresse neu geöffnet werden.

Kopplungsbeschreibung EtherNet/IP

2.7 Konfiguration des EtherNet/IP Scanners

- Abhängig von den unterstützten Eigenschaften des verwendeten Ethernet/IP Scanners ist eine der beiden von IS1+ unterstützten optionalen Datenstrukturen mittels eines IS1+ CPU Parameter auszuwählen. Siehe CPU Parameter.
- Das der gewählten Datenstruktur zugehörige IS1+ EDS File (Electronic Data Sheet) in Konfigurationstool des EtherNet/IP Scanners einlesen.

IS1+ CPU Parameter 'Datenstruktur'	EDS File
Strukt 1: Wenige große Verbindungen	STAHL_RIO9442_EIP_Struct1_01_00.eds
Strukt 2: Viele kleine Verbindungen	STAHL_RIO9442_EIP_Struct2_01_00.eds

- Abhängig vom größten verwendeten IO-Modul Steckplatz einer IS1+ Feldstation sind die im EtherNet/IP Scanner verwendeten zyklischen Verbindungen auszuwählen (siehe unten)
- EtherNet/IP Scanner mit zyklischem Datenverkehr in Betrieb setzen

Zyklische Input und Output Daten einer IS1+ Feldstation werden in Assemblies zusammengefasst. Verschiedene Assemblies bzw. Verbindungen unterschiedlicher Größe zum Transport zyklischer Daten werden von IS1+ zur Verfügung gestellt.

2.7.1 Zyklische I/O Daten - Strukt 1: Wenige große Verbindungen

Daten	Verbindungen		Input Instanz	Input Size (T->O) [Byte]	Output Instanz	Output Size (O->T) [Byte]	Config Instance	Config Size [Byte]		
	Exclusive Owner EO IOM 1-12			131	252 *1)		0			
IOM 1-12	Input Only	IO IOM 1-12	141	252	197	0	107	0		
	Listen Only	LO IOM 1-12					198	0		0
	Exclusive Owner	EO IOM 1-4		84	132	84 *1)		2		
IOM 1-4	Input Only	IO IOM 1-4	142		197	0	108	1		
	Listen Only	LO IOM 1-4				198	0		0	
	Exclusive Owner	EO IOM 13-16				84		2		
IOM 13-16	Input Only	IO IOM 13-16	142	84	197	0	108	1		
	Listen Only	LO IOM 13-16			198	0		0		
Ext.	Input Only	IO Ext HART	143	143 220 -	197	0	109	110		
HART	Listen Only	LO Ext HART	143	220	198	0	109	0		

Zulässige Kombinationen von Verbindungen:

Übertragene IO-Modul Steckplätze	Exclusive Owner	Input Only	Listen Only
1 – 4	EO IOM 1-4	IO IOM 1-4 IO Ext HART	LO IOM 1-4 LO Ext HART
1 – 12	EO IOM 1-12	IO IOM 1-12 IO Ext HART	LO IOM 1-12 LO Ext HART
1 – 16	EO IOM 1-12 EO IOM 13-16	IO IOM 1-12 IO IOM 13-16 IO Ext HART	LO IOM 1-12 LO IOM 13-16 LO Ext HART

Kopplungsbeschreibung EtherNet/IP

*1) Achtung!

Nur eine der möglichen Exclusive Owner (EO) Verbindungen EO IOM 1-4 oder EO IOM 1-12 dürfen gleichzeitig verbunden sein da Ausgabesignale einer IS1+ Feldstation eindeutig von einem EIP Scanner kommen müssen. Wird bei laufender EO Verbindung eine weitere EO Verbindung geöffnet, so werden Ausgabedaten dieser neuen Verbindung von IS1 verworfen und folgende Warnungen erzeugt:

TBD:

Web Server 9442: Meldung 'The output data will not be forwarded! 'auf Seite 'Protocol' im Ext. CIP Status Identity Objekt: Status = 0x0A 'Multiple EO connections!'

2.7.2 Zyklische I/O Daten - Strukt 2: Viele kleine Verbindungen

Daten	Verbino	Input Instanz	Input Size [Byte]	Output Instanz	Output Size [Byte]		
	Exclusive Owner	EO STAT			2	4	
IO-Modul und CPU Status	Input Only	IO STAT	1	4	197		
Cr O Status	Listen Only	LO STAT			198	0	
	Exclusive Owner	EO IOM 1-2			4	40	
IOM 1 und 2	Input Only	IO IOM 1-2	3	40	197	0	
	Listen Only	LO IOM 1-2			198	0	
	Exclusive Owner	EO IOM 3-4			6	40	
IOM 3 und 4	Input Only	IO IOM 3-4	5	40	197	0	
	Listen Only	LO IOM 3-4			198	0	
	Exclusive Owner	EO IOM 5-6			8	40	
IOM 5 und 6	Input Only	IO IOM 5-6	7	7	40	197	0
	Listen Only	LO IOM 5-6			198	0	
	Exclusive Owner	EO IOM 7-8	9		10	40	
IOM 7 und 8	Input Only	IO IOM 7-8		40	197	0	
	Listen Only	LO IOM 7-8			198		
	Exclusive Owner	EO IOM 9-10			12	40	
IOM 9 und 10	Input Only	IO IOM 9-10	11 40	40	197	0	
	Listen Only	LO IOM 9-10			198		
	Exclusive Owner	EO IOM 11-12			14	40	
IOM 11 und 12	Input Only	IO IOM 11-12	13	40	197		
	Listen Only	LO IOM 11-12			198	0	
	Exclusive Owner	EO IOM 13-14			16	40	
IOM 13 und 14	Input Only	IO IOM 13-14	15	40	197	0	
	Listen Only	LO IOM 13-14			198		
	Exclusive Owner	EO IOM 15-16			18	40	
IOM 15 und 16	Input Only	IO IOM 15-16	17	40	197	0	
	Listen Only	LO IOM 15-16			198	0	
Extended HART	Input Only	IO Ext HART	143	220	197	0	
EXICHUCU HART	Listen Only	LO Ext HART	143	220	198		

Kopplungsbeschreibung EtherNet/IP

2.8 Systemanlauf

Konfigurations- und Parameterdaten der CPU und aller IO-Module werden im FDT Frame mittels der IS1 DTMs erstellt, per 'Download' zur IS1+ Feldstation übertragen und im Sockel der CPU permanent gespeichert.

Nach Power On wird der gesamte Datenbereich der Outputregister mit dem Wert 0x8000 initialisiert. Alle Ausgabesignale verbleiben damit in Sicherheitsstellung. Die restlichen Datenbereiche werden mit 0x0000 initialisiert.

Eine CPU prüft nach Power On, ob im Speicher gültige Konfigurations- und Parameterdaten vorliegen.

Ohne gültige Daten meldet die CPU "Konfigurations- oder Parameter Fehler".

Liegen gültige Daten vor, verbleibt die CPU im Zustand "kein Data Exchange (nach Power On)" solange bis eine zyklische Verbindung mit einem EIP Scanner aufgebaut wird.

Die Ausgabesignale verbleiben so lange in Sicherheitsstellung, bis gültige Ausgabedaten vom AS oder von den IS1 DTMs geschrieben werden.

Mögliche Zustände:

Konfigurations- und Parameterdaten	Meldung im Display	CPU Zustand nach Prüfung und Hochlauf
Daten gültig und zyklische Verbindung mit Scanner vorhanden	Data Exchange	Data Exchange mit Scanner (2) Konfig + Param. von DTM
Keine Dateien vorhanden	No Data Exchange	Kein Data Exchange (3)
Daten ungültig (z.B. CRC Fehler)	Config Error	Konfig oder Parameter Fehler (4)
Daten gültig aber keine zyklische Verbindung mit Scanner	Quit Data Exchange	Data Exchange mit AS verlassen (5)

IO-Modul Tausch und Anlauf

Bei einem Tausch von IO-Modulen während des Betriebs werden nach dem Stecken eines IO-Moduls die Modulparameter automatisch von der CPU zum IO-Modul übertragen und es erfolgt ein Wiederanlauf des IO-Moduls -> Hot Swap IOM.

Ausnahme Modul TIM R 9480/..: Der Kalibrierwert bei 2 Leiter Schaltung ist im IO-Modul gespeichert. Bei Modultausch ist ein neuer Abgleich erforderlich.

2.9 Online Umkonfiguration

Eine Online Umkonfiguration von IS1+ I/O Modulen innerhalb der Grenzen des ausgewählten Assemblies ist über FDT möglich.

Voraussetzungen für Online Konfigurationsänderungen:

Soll die Größe eines verwendeten Assemblies geändert werden, so kann dies nur offline durch Auswahl eines der anderen Assemblies erfolgen da eine zyklische Verbindung auf EtherNet/IP nicht online in der Länge der zyklischen Daten verändert werden kann.

Um online Konfigurationsänderungen einer IS1+ Feldstation mit zusätzlichen IO-Modulen zu ermöglichen sind die Assemblies daher während der Projektierung ausreichend groß zu wählen. Reserven für künftige online Erweiterungen sind bei der Auswahl der Größe der verwendeten Assemblies mit einzuplanen.

Kopplungsbeschreibung EtherNet/IP

3 Datenverkehr

3.1 Zyklische Daten (Implicid Messages)

- Für jeden I/O-Modul Steckplatz werden unabhängig von Modul Typ und Konfiguration jeweils 18
 Byte Input- und 18 Byte Output Daten von der 9442 CPU reserviert.
 Bei Struktur2 werden nachfolgend zusätzlich 2 Byte mit Signalstatus übertragen, so dass sich jeweils 20 Byte Input- und 20 Byte Output Daten je IO-Modul ergeben.
 Durch die konstante Datenlänge je IO-Modul entstehen keine Verschiebungen bei einer Umkonfiguration von IO-Modulen im Betrieb und diese ist damit stoßfrei für die nicht veränderten Module.
- Über die Konfiguration mittels FDT werden I/O-Modul Typen den Steckplätzen zugeordnet.
- Abhängig vom gewählten Modul Typ werden die Moduldaten von der IS1 Feldstation in die reservierten Bereiche gemappt. Nicht verwendete Bereiche bleiben leer, werden aber trotzdem zyklisch mit dem EIP Scanner aktualisiert.
- Verschiedene Assemblies mit unterschiedlichen Längen der zyklischen Daten und damit die Anzahl der übertragenen IOM Steckplätze sind im EtherNet/IP Scanner projektierbar.

Kopplungsbeschreibung EtherNet/IP

3.1.1 Connections: EO IOM 1-4, IO IOM 1-4, LO IOM 1-4

Slot	ІОМ Тур
1	-
2	-
3	
4 1 - 4	-
CPU	-
0. 0	AUM
1	18 Byte je IOM siehe <u>Daten</u> Formate
2	DOM
3	АОМ
4	DIOM

	Zyklische Daten (Implicit Messages)					
Byte	Nr.	Input Assembly	Output Assembly			
0	1	Signal Stati Steckplatz 1	-			
2	3	Signal Stati Steckplatz 2	-			
4	5	Signal Stati Steckplatz 3	-			
6	7	Signal Stati Steckplatz 4	-			
8	9	Modul Status Steckplatz 1 bis 4	-			
10	11	CPU Status	Steuer Register CPU			
12	13	AI 0	AO 0			
14	15	Al 1	AO 1			
16	17	Al 2	AO 2			
18	19	AI 3	AO 3			
20	21	Al 4	AO 4			
22	23	AI 5	AO 5			
24	25	AI 6	AO 6			
26	27	Al 7	AO 7			
28	29	-	-			
30	31	-	DO 0 – 7			
32	33	-	-			
34	35	-	-			
36	37	-	-			
38	39	-	-			
40	41	-	-			
42	43	-	-			
44	45	-	-			
46	47	-	-			
48	49	-	AO 0			
50	51	-	AO 1			
52	53	-	AO 2			
54	55	-	AO 3			
56	57	-	AO 4			
58	59	-	AO 5			
60	61	-	AO 6			
62	63	-	AO 7			
64	65					
66	67	DI 0 – 15	DO 0 – 15			
68	69	CF 15 Reset 8–15 Start/St				
70	71	CF 14	-			
72	73	CF 13	-			
74	75	CF 12	-			
76	77	CF 11	-			
78	79	CF 10	-			
80	81	CF 9	-			
82	83	CF 8	-			

Kopplungsbeschreibung EtherNet/IP

3.1.2 Connections: EO IOM 1-12, IO IOM 1-12, LO IOM 1-12

Ol - t	IOM		Zyklische Daten (Implicit Messages)				
Slot	Тур	Byte	Nr.	Input Assembly	Output Assembly		
1	-	0	1	Signal Stati Steckplatz 1	-		
	-				-		
16	- 30 31 Signal Stati Steckplatz 16		Signal Stati Steckplatz 16	-			
1 - 16	-	32	33	Modul Status Steckplatz 1 bis 16	-		
CPU	-	34	35	CPU Status	Steuer Register CPU		
		36	37	AI 0	-		
		38	39	Al 1	-		
		40	41	AI 2	-		
	AIM	42	43	AI 3	-		
1	18 Byte	44	45	Al 4	-		
	je IOM	46	47	AI 5	-		
	siehe	48	49	AI 6	-		
	<u>Daten</u>	50	51	Al 7	-		
	<u>Formate</u>	52	53	-	-		
		54	55	DI 0 – 15	-		
		56	57	CF 15	Reset 8–15 Start/Stop 8-15		
		58	59	CF 14	-		
		60	61	CF 13	-		
2	DIM	62	63	CF 12	-		
		64	65	CF 11	-		
		66	67	CF 10	-		
		68	69	CF 9	-		
		70	71	CF 8	-		
		72	73	-	AO 0		
		74	75	-	AO 1		
		76	77	-	AO 2		
		78	79	-	AO 3		
3	AOM	80	81	-	AO 4		
		82	83	-	AO 5		
		84	85	-	AO 6		
		86	87	-	AO 7		
		88	89	-	-		
		90	91	DI 0 – 15	DO 0 – 15		
		92	93	CF 15	Reset 8–15 Start/Stop 8-15		
		94	95	CF 14	-		
		96	97	CF 13	-		
4	DIOM	98	99	CF 12	-		
		100	101	CF 11	-		
		102	103	CF 10	-		
		104	105	CF 9	-		
		106	107	CF 8	-		

.

Kopplungsbeschreibung EtherNet/IP

Slot	IOM Typ
5	AUM
12	DOM

		Zyklische Daten (Implicit	Messages)
Byte	Nr.	Input Assembly	Output Assembly
108	109	AI 0	AO 0
110	111	Al 1	AO 1
112	113	Al 2	AO 2
114	115	AI 3	AO 3
116	117	Al 4	AO 4
118	119	AI 5	AO 5
120	121	AI 6	AO 6
122	123	Al 7	AO 7
124	125	-	-
234	235	-	DO 0 – 7
236	237	-	-
238	239	-	-
240	241	-	-
242	243	-	-
244	245	-	-
246	247	-	-
248	249	-	-
250	251	-	-

Kopplungsbeschreibung EtherNet/IP

3.1.3 Connections: EO IOM 13-16, IO IOM 13-16, LO IOM 13-16

Slot	IOM Typ
-	-
-	-
-	-
-	-
-	-
-	-
13	AUM 18 Byte je IOM siehe Daten Formate
14	DOM
15	АОМ
16	DIOM

	Zyklische Daten (Implicit Messages)						
Byte	e Nr.	Input Assembly	Output Assembly				
0	1						
2	3						
4	5	Reserved	Reserved				
6	7	Reserved	Reserved				
8	9						
10	11						
12	13	AI 0	AO 0				
14	15	Al 1	AO 1				
16	17	Al 2	AO 2				
18	19	AI 3	AO 3				
20	21	Al 4	AO 4				
22	23	AI 5	AO 5				
24	25	AI 6	AO 6				
26	27	Al 7	AO 7				
28	29	-	-				
30	31	-	DO 0 – 7				
32	33	-	-				
34	35	-	-				
36	37	-	-				
38	39	-	-				
40	41	-	-				
42	43	-	-				
44	45	-	-				
46	47						
48	49	-	AO 0				
50	51	-	AO 1				
52	53	-	AO 2				
54	55	-	AO 3				
56	57	-	AO 4				
58	59	-	AO 5				
60	61	-	AO 6				
62	63	-	AO 7				
64	65	-	-				
66	67	DI 0 – 15	DO 0 – 15				
68	69	CF 15	Reset 8–15 Start/Stop 8-15				
70	71	CF 14	-				
72	73	CF 13	-				
74	75	CF 12	-				
76	77	CF 11	-				
78	79	CF 10	-				
80	81	CF 9	-				
82	83	CF 8	-				

Kopplungsbeschreibung EtherNet/IP

3.1.4 Connections: EO STAT, IO STAT, LO STAT

Slot	IOM Typ
1 - 16	-
CPU	-

	Zyklische Daten (Implicit Messages)					
Byte Nr.		Input Assembly	Output Assembly			
0	1	Modul Status IOM Steckplatz 1 bis 16	-			
2	3	CPU Status	Steuer Register CPU			

3.1.5 Connections: EO IOM 1-2, EO IOM 15-16

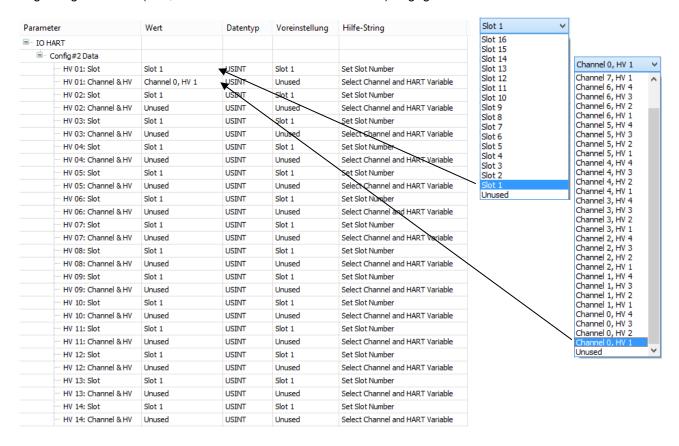
Slot	IOM Typ
n *1)	AUM
n + 1	DOM

		Zyklische Daten (Implicit Messages)		
Byte	Nr.	Input Assembly	Output Assembly		
0	1	AI 0	AO 0		
2	3	Al 1	AO 1		
4	5	Al 2	AO 2		
6	7	AI 3	AO 3	18 Byte	
8	9	AI 4	AO 4	I/O-Daten siehe	
10	11	AI 5	AO 5	Daten Formate	
12	13	AI 6	AO 6		
14	15	AI 7	AO 7		
16	17	-	-		
18	19	Signal Stati Steckplatz n	-	Signal Status	
20	21	-	DO 0 – 7		
22	23	-	-		
24	25	-	-		
26	27	-	-	18 Byte	
28	29	-	-	I/O-Daten siehe	
30	31	•	-	Daten Formate	
32	33				
34	35	-	-		
36	37	-	-		
38	39	Signal Stati Steckplatz n+1		Signal Status	

^{*1)} Slot n = 1, 3, 5, .. ,15

Kopplungsbeschreibung EtherNet/IP

3.1.6 Connections: IO Ext HART, LO Ext HART


Input Assembly:

Funktion	Byte Offset	Signal	Daten Typ	T -> O Größe	Config #2 Größe	Verbindungspfad
	0 – 3	HV 01				
Extended	4 – 7	HV 02				
HART	8 – 11	HV 03	Float	220 Byte	110 Byte	20 04 24 6C 2C C5 2C 8F
Variablen						
	216 – 219	HV 55				

55 HART Variablen mit variabler Zuordnung über Configuration Assembly können zyklisch übertragen werden. Dieses erweiterte (extended) Mapping der HART Daten wird nur von den HART IOM 9468 und 9469 unterstützt.

Configuration Assembly

Für jede der 55 von den HART IO-Modulen zyklisch gelesenen und übertragenen HART Variablen kann die zugehörige Adresse (Slot, Kanal und HART Variable HV 1 – 4) angegeben werden.

Kopplungsbeschreibung EtherNet/IP

3.2 CIP Common Klassen

Folgende Klassen werden von der IS1+ EtherNet/IP Firmware unterstützt:

Klasse	Name	
0x01	Identity	
0x02	Message Router	
0x04	Assembly	
0x06	Connection Manager	
0x48	QoS (Quality of Service)	
0xF5	TCP/IP Interface Objekt	
0xF6	Ethernet Link Objekt	

3.2.1 Assembly / Parameter 9442 CPU Klasse 0x04

Klasse/Instanz Funktionen

Servicecode	Service	vorhanden	Service Name
Servicecode	Klasse	Instanz	Service Name
0x01	Nein	Nein	Get_Attribute_All
0x0E	Nein	Ja	Get_Attribute_Single

Als Assemblies azyklisch lesbare Daten der 9442 CPU:

Instanz	Zugriff	Name	Beschreibung	Attribut	Connection- Path	Size [Byte]
101		CpuStatus	Siehe CPU Statusregister	3	20 04 24 65 30 03	2
102		ModulStatus	1 Bit Status je Modul	3	20 04 24 66 30 03	4
103		SignalStatus	1 Bit Status je Signal	3	20 04 24 67 30 03	32
110	Get	HART LiveList	1 Bit Livelist je HART Kanal	3	20 04 24 6E 30 03	16
111		HART IOMx	Max. 8 rangierte HART Variablen je IO-Modul	X = 101 bis 116	20 04 24 6F 30 xx	32
112	Evt HART IOMy		4HV + EXDEVSTAT aller 8 HART Geräte eines IO-Moduls	(Slot + 100)	20 04 24 70 30 xx	192

Azyklisch lesbare Daten (Assemblies) der 9442 CPU:

Alle oben beschriebenen zyklisch lesbaren Daten (Assemblies) können optional auch azyklisch mit Attribut = 3 gelesen werden.

Siehe: Zyklische I/O Daten - Strukt 1: Wenige große Verbindungen

Zyklische I/O Daten - Strukt 2: Viele kleine Verbindungen

Kopplungsbeschreibung EtherNet/IP

3.3 Daten Formate

3.3.1 I/O Assembly Data Attribute Format

3.3.1.1 Digital Input / Output Module - DIM, DIOM

Deten	Byte	(947 <mark>x</mark> /3x	alle DIN im Kompati		DIC	OM 9470/3	x, 9471/35	, 9472/35 (IS1+)	Turn	
Daten	Offset	DIM	DIM +Stat	DIM +2CF	DIM	DI/DO	DI/DO +2CF	DI/DO +6CF	DI/DO +8CF	Тур	
	0		=	-	DI Sig	nale 0-7	*1)			BitStr	
	1		DI Signale 8 – 15 *1)								
	2 + 3			C/F I14			C/F S15	C/F S15	C/F S15		
	4 + 5			C/F I15			C/F S14	C/F S14	C/F S14		
Input	6 + 7							C/F S13	C/F S13		
	8 + 9	_	_	_	_	_	_	C/F S12	C/F S12	UINT16	
	10+11	_	_	_	_	_	-	C/F S11	C/F S11	(UINT32)	
	12+13							C/F S10	C/F S10		
	14+15							_	C/F S9		
	16+17							-	C/F S8		
	0			*2)		DO 0 - 7	DO 0 - 7	DO 0 - 7	DO 0 - 7		
	1			-		DO 8 - 15	DO 8 - 15	DO 8 - 15	DO 8 - 15		
	2	-	-	-	-		Reset C14-15	Reset C10-15	Reset C8-15	BitStr	
	3			-		-	Start/Stop C14-15	Start/Stop C10-15	Start/Stop C8-15		
	4-17			-			-	-	-		

^{*1)} Bei Betriebsart DI/DO und Parametrierung als DO weden geschriebene Signalwerte über die zugehörigen DI Signale als Readback zurück geliefert.

Bei Betriebsart DI/DO und Parametrierung als DI haben zugehörige DO Signale keine Wirkung.

Byte	Bit		DO	Reset	Counter	Start/Stop Counter		
	0	DO 0/8	0 = Ausgang ist	Reset C8		Start/Stop C8		
	1		hochohmig	Reset C9	0 = Run,	Start/Stop C9	0 = Zähler läuft	
siehe oben			(Aktor = Aus) 1 = Ausgang wird		1 = Reset			
ODCII	6		gespeist	Reset C14	(Zähler = 0)	Start/Stop C14	1 = Zähler steht	
	7	DO 7/15	(Aktor = Ein)	Reset C15]	Start/Stop C15		

Output Daten DI/DO+xCF

*2) Output Daten **DIM+2CF**:

Byte	Bit	Funktion	
	0	Reset Counter S14	0 = Run,
	1	Reset Counter S15	1 = Reset (Zähler = 0)
1	2	Start/Stop S14	0 = Zähler läuft
	3	Start/Stop S15	1 = Zähler steht
	4 - 7	0 (Reserviert)	-

Kopplungsbeschreibung EtherNet/IP

3.3.1.2 Digital Output Module - DOM

Daten	Byte	Bit	DOM 8	DOM 6	DOM 4
	Offset			9477/12-06-12	
Input	0 - 17	0 – 7		0 (Reserviert)	
	0	0	DO 0	DO 0	DO 0
		1	DO 1	DO 1	DO 1
		2	DO 2	DO 2	DO 2
		3	DO 3	DO 3	DO 3
Output	U	4	DO 4	DO 4	
-		5	DO 5	DO 5	
		6	DO 6		_
		7	DO 7	-	
	1 - 17	0 - 7			

Signalbit = 0	Signalbit = 1	Тур
Ausgang ist hochohmig (Aktor = Aus)	Ausgang wird gespeist gemäß Typspezifikation (Aktor = Ein)	DOM
Relaiskontakt = offen	Relaiskontakt = geschlossen	DOMR
Ventil geschlossen	Ventil offen	DOMV

Status Bit	Signal	
0	gestört	×
1	ОК	

Kopplungsbeschreibung EtherNet/IP

3.3.1.3 Analog Input / Output / Universal Modul - AIM / AOM / AUM / UMH

	Byte					Betrieb	sart																																	
Daten	Offset	8AI	8AO	6AI+2AC	8AI/8AO	8AI +4HV	8AO +4HV	8AI/8AO +4HV	8AI +8HV	8AO +8HV	8AI/8AC +8HV																													
	0	10		10	10	10		- 10	10		10																													
	2	I1			I1	I1		/1	I1		1																													
	4 5	12		12	12	12		12	12		l2																													
Ħ	6 7	13		13	13	13		13	13		13																													
Input	8	14		14	14	14		14	14		14																													
	10 11	15		15	15	15		15	15		15																													
	12 13	16			16	16		16	16		16																													
	14 15	17																								/_	/_							17	17		17	17		17
	16 - 17	-	-	-	-	- /		-	-		-																													
	0-1		00	O6	00		00	00		00	O0																													
	2-3		01	07	01		01	01		01	01																													
	4-5		02		02		O2	02		02	02																													
out	6-7		03		03		03	03		03	03																													
Output	8-9	- /	04		04		04	04	-/	04	04																													
0	10-11		O5	-	O5 O6		O5 O6	O5 O6		O5	O5 O6																													
	12-13 14-15		O6 O7		O6 O7		06	06		O6 O7	06																													
	16-17		-		-		-	-		-	-																													

<u>Achtung!</u> Da bei EIP immer 18 Byte Input + 18 Byte Output transportiert werden, machen die violett gekennzeichneten Betriebsarten hier keinen Sinn.

Alternative +4 HV oder +8 HV mit rangierten HART Daten machen ebenfalls keine Sinn, da alle HART Daten in einem separaten Assembly zur Verfügung stehen.

Damit Projektierungsregel: Immer 8AI/8AO verwenden.

Andere Betriebsarten möglichst nicht verwenden.

Readback:

Bei allen 8AI/8AO Betriebsarten und Parametrierung eines Kanals als AO kann der ausgegebene Wert über das zugehörige AI Signal zurückgelesen werden (Readback). Bei Parametrierung als AI haben zugehörige AO Signale keine Wirkung.

S0 - S7 = Signal Status Bits der Signale 0 bis 7.

Status Bit	Signal	
0	gestört	X
1	ОК	

DI/DO I0-I7/O0-O7 nur bei 9469/.. verfügbar:

Signal Status Informationen sind als Status Code im Integer (INT16) und zusätzlich als separate Signal Status Bits verfügbar. Siehe auch I/O - Baugruppen analog

Kopplungsbeschreibung EtherNet/IP

3.3.2 Signal Status

Function	Byte		Signal Status							Data
- unonon	Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Туре
Signal Stati	0	S 7	S 6	S 5	S 4	S 3	S 2	S 1	S 0	
Slot 1	1	S 15	S 14	S 13	S 12	S 11	S 10	S 9	S 8	
Slot		-			-				-	Bit
2 - 15			·	•	•		•	•	•	DIL
Signal	30	S 7	S 6	S 5	S 4	S 3	S 2	S 1	S 0	
Stati Slot 16	31	S 15	S 14	S 13	S 12	S 11	S 10	S 9	S 8	

Je IO-Modul werden immer 2 Byte (16 Bit) mit Signalstatus Information der Signale S0 bis S15 übertragen. Je nach ausgewählter Verbindung werden Signalstati von 1, 4, oder 16 IO-Modulen gemäß obiger Struktur übertragen.

Statusbit = 0 -> Signal ist gestört (Kurzschluss, Leitungsunterbrechung, Modulfehler ...)

Statusbit = 1 -> Signal ungestört oder Signal nicht vorhanden. Keine Modul- oder Signalalarme vorhanden.

Details der Alarme können über die IS1 DTMs angezeigt werden.

3.3.3 Modul Status

In den Bytes 0 bis 3 des Assemblies wird die Modul Status Information übertragen. Hier ist je IO-Modul ein Bit enthalten mit folgender Zuordnung:

Status-Bit = 0 -> mindestens eine Signal Diagnose oder Moduldiagnose steht an.

Status-Bit = 1 -> keine Diagnose Alarme im Modul. Alle Ein- oder Ausgänge des Moduls sind ohne Fehler oder Modul nicht konfiguriert.

Signal Diagnosen:

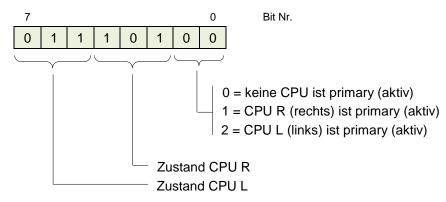
- Kurzschluss
- Leitungsunterbrechung
-

Modul Diagnosen:

- IO-Modul meldet sich nicht
- Falsches IO-Modul gesteckt
- Prim/Red. Railverbindung gestört
- Maintenace Alarm IOM,

Mit diesen Status Bits können Alarmmeldungen im Automatisierungssystem generiert werden. Für Ein- und Ausgabesignale können zusätzlich Statusinformationen je Signal sowohl zyklisch als auch azyklisch gelesen werden (siehe <u>Signalverhalten im Fehlerfall</u>). Diagnose Details können über die IS1 DTM's angezeigt werden.

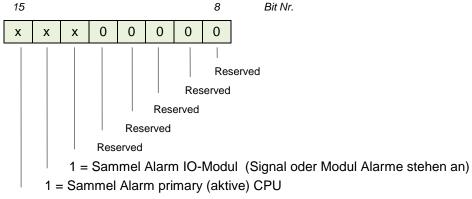
Function	Byte				Modul	Status				Data
	Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Туре
Modul Status IOM	32	Status Slot 8	Status Slot 7	Status Slot 6	Status Slot 5	Status Slot 4	Status Slot 3	Status Slot 2	Status Slot 1	D:t
	33	Status Slot 16	Status Slot 15	Status Slot 14	Status Slot 13	Status Slot 12	Status Slot 11	Status Slot 10	Status Slot 9	Bit



Kopplungsbeschreibung EtherNet/IP

3.3.4 **CPU Status**

Liefert den aktuellen Zustand der CPU bzw. der beiden CPUs bei redundanter Betriebsart:


Low Byte (Byte 34):

Zustand CPU:

Wert 0 (000)	Reserviert
Wert 1 (001)	Hardwarefehler CPU
Wert 2 (010)	Data Exchange mit AS (Konfig + Parameter von IS1 DTMs)
Wert 3 (011)	kein Data Exchange (nach Power On ohne Konfig- und Parameter Daten)
Wert 4 (100)	Konfigurations- oder Parameter Fehler
Wert 5 (101)	Data Exchange mit AS verlassen (Auch nach Power On, wenn Konfig- und Parameter Daten gültig)
Wert 6 (110)	Reserviert
Wert 7 (111)	Reserviert (red. CPM nicht verfügbar)

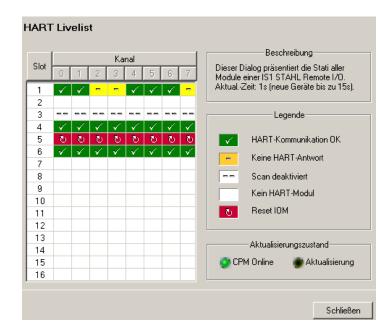
High Byte (Byte 35):

1 = Reserved (Backup CPU nicht verfügbar, fehlerhaft oder keine Verbindung (nicht im DataExchange))

Steuerregister CPU 3.3.5

Reserviert

Kopplungsbeschreibung EtherNet/IP


3.3.6 HART Livelist

Function	Byte	Signal							Data	
Offset	Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Туре
HLL Slot 1	0	LL Input 7	LL Input 6	LL Input 5	LL Input 4	LL Input 3	LL Input 2	LL Input 1	LL Input 0	
HLL Slot	•••									Bit
HLL Slot 16	15	LL Input 7	LL Input 6	LL Input 5	LL Input 4	LL Input 3	LL Input 2	LL Input 1	LL Input 0	

LL: HART Gerät an Kanal verfügbar: 0= Nein, 1=Ja

Livelist Info wird nur aktualisiert, wenn über Parameter 'Scan HART Livelist' aktiviert.

Anzeige HART Livelist in IS DTM:

Übersicht über den Status aller an eine IS1+ Feldstation angeschlossener HART Feldgeräte zur vereinfachten Inbetriebnahme und Wartung.

Weitere Informationen zur Anwendung der IS1 DTMs siehe Betriebsanleitung 'DTM IS1 Mod'.

Kopplungsbeschreibung EtherNet/IP

3.3.7 HART Variablen

HART Feldgeräte bieten zusätzlich zum analogen Prozesswert die Möglichkeit bis zu vier Prozessvariablen (HART Variablen HV: PV, SV, TV, QV) digital vom Transmitter zu lesen.

Rangierte HART Variablen - HART IOMx

IS1+ bietet die Möglichkeit rangierte HART Variable über azyklische Assemblies (HART IOMx) zu übertragen. Optional können aus den 32 in den HART Field Devices verfügbaren HART Variablen (HV) keine, vier oder acht HART Variable eines IS1+ HART Moduls (AIMH, AUMH, AOMH) rangiert und zusätzlich zu den zyklischen Daten übertragen werden. Dies kann bei der Konfiguration einer Feldstation optional ausgewählt werden.

Erweiterte (Extended) HART Variablen - Ext HART IOMx.

Mit IS1+ 9442 CPUs in Verbindung mit 9468 AUMH ab Rev. V03-06 oder 9469 UMH können alle 32 HV der max. 8 HART Feldgeräte (HFD) eines IS1+ IOMH sowie zusätzlich HART Geräte Stati sowohl zyklisch, als auch azyklisch übertragen werden. Diese zusätzlichen HART Daten stehen parallel zu der oben beschriebenen rangierten Variante zur Verfügung.

Speisung der HART Geräte beim Analog Universal Modul AUMH 9468/3x oder UMH 9469

Jeder Kanal eines AUMH oder UMH kann per Parametrierung als Analog Eingang für HART Sensoren oder als Analog Ausgang für HART Aktoren umgeschaltet werden. Die Speisung von HART Sensoren und HART Aktoren ist unterschiedlich und wird mit umgeschaltet. Zur Kommunikation mit HART Sensoren sind die betreffenden Kanäle per Parametriertung auf 'Eingang' zu schalten. Zur Kommunikation mit HART Aktoren sind die betreffenden Kanäle per Parametriertung auf 'Ausgang' zu schalten.

Im unparametrierten Zustand befinden sich die Kanäle in Stellung 'Ausgang' und es kann nur mit HART Aktoren über HART kommuniziert werden.

Verfügbarkeit von HART Vartiablen und azyklischer HART Kommunikation:

Konfiguration	Parameter	Rangierte +4/ +8 HV	Erweiterte 32 HV	azykl. HART	Polling HV durch AUMH/UMH
Keine Konfig	Unparametriert		Ja, nur von HART Aktoren	Ja, nur von HART Aktoren	Ja
9468/9469	Livelist = OFF	-	•	Ja	Nein
keine HV	Livelist = ON	-	Ja	Ja	lo.
9468/9469 + HV	HV Rangierung	Ja	Ja	Ja	Ja

Kopplungsbeschreibung EtherNet/IP

3.3.7.1 Modul Auswahl im IS1 DTM

Modul Auswahltext	Anzahl der übertragenen HART Variablen (HV) mittels Rangierung	
9461/12-08-11 AIMH 8 2w Exi	keine	
9461/12-08-11 AIMH 8+ 4HV 2w Exi	4 HV	
9461/12-08-11 AIMH 8+ 8HV 2w Exi	8 HV	
9461/12-08-21 AIMH 8 Exi	keine	
9461/12-08-21 AIMH 8+ 4HV Exi	4 HV	
9461/12-08-21 AIMH 8+ 8HV Exi	8 HV	
9466/12-08-11 AOMH 8 Exi	keine	
9466/12-08-11 AOMH 8+ 4HV Exi	4 HV	
9466/12-08-11 AOMH 8+ 8HV Exi	8 HV	
9468/3x-08-xx 8AIH + 4HV		
9468/3x-08-xx 8AOH +4HV	4 HV	
9468/3x-08-xx 8AIH/8AOH +4HV		
9468/3x-08-xx 8AIH + 8HV		
9468/3x-08-xx 8AOH + 8HV	8 HV	
9468/3x-08-xx 8AIH/8AOH +8HV		
9469/35-08-xx 8IH Exn		
9469/35-08-xx 8OH Exn	keine	
9469/35-08-xx 6IH+2OH Exn	Kellie	
9469/35-08-xx 8IH/8OH Exn		
9469/35-08-xx 8IH +4HV Exn		
9469/35-08-xx 8OH +4HV Exn	4 HV	
9469/35-08-xx 8IH/8OH +4HV Exn		
9469/35-08-xx 8IH +8HV Exn		
9469/35-08-xx 8OH +8HV Exn	8 HV	
9469/35-08-xx 8IH/8OH +8HV Exn		

3.3.7.2 Datenformat

HART Variable werden als IEEE Floating Point Zahlen übertragen (4 Byte).

Einstellungen von Skalierung und übertragener Engineering Unit erfolgen im HART Gerät.

Kann eine HART Variable nicht gelesen werden (z.B. HART Gerät im Anlauf, nicht angeschlossen, defekt, HART Variable ist nicht vorhanden, ...) so wird der Wert 7F A0 00 00 (Not a Number) übertragen. Dies kann im AS zur Bildung eines Signalstatus der HART Variablen ausgewertet werden. Detaillierte Status- und Diagnoseinformationen der HART Feldgeräte sind über HART Management Systeme auswertbar.

Kopplungsbeschreibung EtherNet/IP

3.3.7.3 Rangierte HART Variablen - HART IOMx

An einem HART Modul von IS1+ können bis zu 8 HART Feldgeräte angeschlossen werden. Da jedes HART Feldgerät bis zu 4 Variablen besitzen kann sind somit maximal 32 HART Variable je IS1+ HART Modul in den HART Devices möglich.

Per Parametrierung in IS1 DTM oder IS Wizard kann die Zuordnung (Rangierung) von 4 oder 8 aus diesen 32 Variablen zu den Positionen P1 bis P8 im zyklischen Übertragungsbereich gewählt werden:

Parameter Name	Wertebereich	Funktion
Eingang Nr. HART Gerät für Pos. 1	0 7,	Auswahl der Kanal Nr. (Eingang / Ausgang Nr.) des HART Moduls an den das HART Feldgerät angeschlossen ist, welches auf Pos.1 übertragen werden soll. Bei Auswahl von 'Not Used' wird der Wert 'Not a Number' (7F A0 00 00) übertragen.
Eingang Nr. HART Gerät für Pos. 2	Nicht verwendet	Auswahl für Pos. 2
Eingang Nr. HART Gerät für Pos. 4 (8)		Auswahl für Pos. 4 (8)
HART Variable für Pos. 1		Auswahl der Variablen des HART Feldgerätes, welches auf Pos.1 übertragen werden soll.
HART Variable für Pos. 2		Auswahl für Pos. 2
HART Variable für Pos. 4 (8)		Auswahl für Pos. 4 (8)

Assembly Struktur - HART IOMx:

(x = Steckplatz 1 - 16)

Function	Byte Offset	Signal	Data Type
	0 – 3	HV Pos 1	
Rangierte	4 – 7	HV Pos 2	
HÄRT	8 – 11	HV Pos 3	Float
Variablen			1 locat
	28 - 31	HV Pos 8	

Kopplungsbeschreibung EtherNet/IP

3.3.7.4 Erweiterte HART Variablen - Ext HART IOMx

Function	Byte Offset		Daten	Data Type
	0 – 3		HV 1 (PV)	
	4 – 7	Kanal 0	HV 2 (SV)	
	8 – 11	Nallal U	HV 3 (TV)	
	12 – 15		HV 4 (QV)	
	16 – 19	Kanal 1	HV 1 (PV)	Float
Extended	20 – 23		HV 2 (SV)	
HART Variablen	24 – 27		HV 3 (TV)	
(HV)	28 – 31		HV 4 (QV)	
, ,		•••		
	112 – 115		HV 1 (PV)	
	116 – 119	Kanal 7	HV 2 (SV)	
	120 – 123		HV 3 (TV)	
	124 – 127		HV 4 (QV)	
Status	128	Kanal 0	Extended Device Status EXTDEVSTATUS	Byte
	129	Kanal 1		
	135	Kanal 7		

EXTDEVSTATUS:

Enthält NAMUR NE107 kompatible Condensed Status Informationen.

Vollwertig nur von Geräten ab HART7 lesbar.

Ab HART 6 sind nur die Bits 0 und 1 enthalten.

Liefert Info aus dem HART Feldgerät (HFD) wenn das Gerät errreichbar ist und EXTDEVSTATUS unterstützt wird.

Wenn das HFD nicht erreichbar ist oder EXTDEVSTATUS vom HFD nicht unterstützt ist, wird im IOMH gesetzt:

- EXTDEVSTATUS = Good (0x00) wenn HV Variable lesbar.
- EXTDEVSTATUS = Failure (0x08) wenn HV Variable nicht lesbar.

HART Condition Monitoring

Für ein einfaches Condition Monitoring von HART Geräten kann der EXTDEVSTATUS aller HFD zyklisch vom AS gelesen und im Fehlerfall bei Bedarf Operator Warnungen generiert werden.

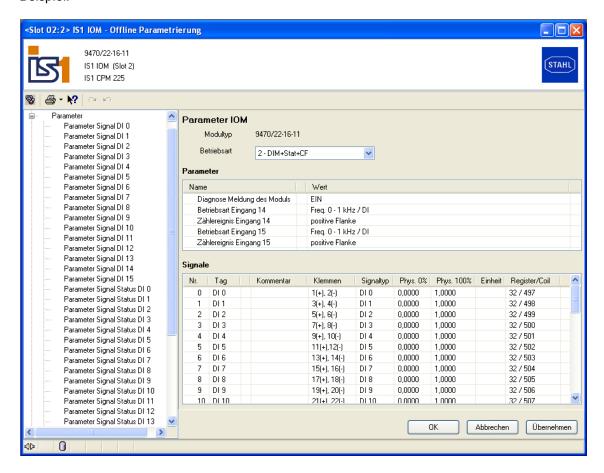
Das Maintenance Personal kann dann gezielt z.B. über FDT das betroffene HART Gerät prüfen, Details aus dem Gerät auslesen und bei Bedarf Wartungsarbeiten vornehmen.

Kopplungsbeschreibung EtherNet/IP

HCF / FCG SPEC-183 Tab. 17 EXTDEVSTATUS (contains NAMUR NE107-compatible Condensed Status):

Code Description

- 0x01 Maintenance Required. [Condensed Status] This bit is set to indicate that, while the device has not malfunctioned, the Field Device requires maintenance. Devices supporting this bit should support the Condensed Status Commands (see Common Practice Command Specification).
- 0x02 Device Variable Alert. This bit is set if any Device Variable is in an Alarm or Warning State. The host should identify the Device Variable(s) causing this to be set using the Device Variable Status indicators.
- 0x04 Critical Power Failure. For devices that can operate from stored power. This bit is set when that power is becoming critically low. For example, a device scavenging power loosing that power source would set this bit. Devices must be able to sustain their network connection for at least 15 minutes from the when this bit is set. A device may begin gracefully disconnecting from the network if its power level drops too low.
- Ox08 Failure. [Condensed Status] When this bit is set one or more Device Variables (i.e., measurement or control values) are invalid due to a malfunction in the field device or its peripherals. Devices supporting this bit must support the Condensed Status Commands (see Common Practice Command Specification).
- Out of Specification. [Condensed Status] When set, this bit indicates deviations from the permissible ambient or process conditions have been detected that may compromise measurement or control accuracy (i.e., device performance may be degraded given current operating conditions). Devices supporting this bit must support the Condensed Status Commands (see Common Practice Command Specification).
- 0x20 Function Check. [Condensed Status] This bit is set if one or more Device Variables are temporarily invalid (e.g. frozen) due to ongoing work on the device. Devices supporting this bit must support the Condensed Status Commands (see Common Practice Command Specification).



Kopplungsbeschreibung EtherNet/IP

3.4 Parametrierung der IS1+ Feldstation sowie der IO-Module

Konfiguration, Parametrierung, Diagnose und HART Kommunikation der IS1+ Feldstation erfolgt über die IS1 DTMs mittels FDT Technologie.

Beispiel:

Weitere Informationen zur Anwendung der IS1 DTMs siehe Betriebsanleitung 'DTM IS1'.

Kopplungsbeschreibung EtherNet/IP

3.5 IS1 Parametersatz

3.5.1 CPU Parameter

Parameter Name	Parameter Wert	
Haltezeit Ausgabemodule TMod (x 100 ms)	Unsigned8 (1 - 255) Default: 10	
CPU Redundant	Nein Ja	
PM Redundant	Nein Ja	
Datenstruktur *1)	Strukt 1: Wenige große Verbindungen Strukt 2: Viele kleine Verbindungen	

*1) Achtung!

Abhängig vom Parameter 'Datenstruktur' ist ein jeweils zugehöriges .EDS File für die Projektierung des EtherNet/IP Scanners zu verwenden. Siehe <u>Systemvoraussetzungen</u>

Bei falscher Zuordnung von CPU Parameter 'Datenstruktur' und zugehörigem EDS File wird ein Verbindungsaufbau mit einer Fehlermeldung abgelehnt. Eine Änderung des CPU Parameters im Betrieb wird abgelehnt und eine 'Upload' mit den bisherigen Einstellungen angefordert.

Kopplungsbeschreibung EtherNet/IP

3.5.2 IO-Modul Parameter

3.5.2.1 AIM / AIMH

mittel Status Code Ein	Aus Ein Klein mittel groß (50 Hz) groß (60 Hz) -10 % (nur 4 mA) 0 % 100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%) Aus Ein
Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	Klein mittel groß (50 Hz) groß (60 Hz) -10 % (nur 4 mA) 0 % 100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%)
Status Code Ein Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	-10 % (nur 4 mA) 0 % 100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%)
Status Code Status Code Status Code Status Code Status Code Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	0 % 100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%)
Status Code Status Code Status Code Status Code Status Code Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	0 % 100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%)
Status Code Status Code Status Code Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	100 % Status Code Halten (Initialwert 0%) Halten (Initialwert 100%) Aus
Status Code Status Code Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	Halten (Initialwert 0%) Halten (Initialwert 100%) Aus
Status Code Status Code Ein Ein Ein Ein Ein Ein Ein Ein A20 mA	Halten (Initialwert 100%) Aus
Status Code Ein Ein Ein Ein Ein Ein Ein Ein Ein 420 mA	Aus
Ein Ein Ein Ein Ein Ein Ein Ein Ein 420 mA	
Ein Ein Ein Ein Ein Ein Ein Ein 420 mA	
Ein Ein Ein Ein Ein Ein 420 mA	
Ein Ein Ein Ein Ein 420 mA	
Ein Ein Ein 420 mA 420 mA	
Ein Ein 420 mA 420 mA	Ein
Ein Ein 420 mA 420 mA	-
Ein 420 mA 420 mA	-
420 mA 420 mA	
420 mA	-
	4
	4
	020 mA
	420 mA
	-
	-
	_
	-
	Nein
	Ja
	-
_	-
	Aus
Ein	Ein
Nicht verwendet	
Nicht verwendet	07
Nicht verwendet	'Nicht verwendet'
Nicht verwendet	
Nicht verwendet	
HART Variable Nr. 2	_
HART Variable Nr. 2	_
	HART Variable Nr. 1
	HART Variable Nr. 2
	HART Variable Nr. 3
	HART Variable Nr. 4
	4
	420 mA Nein Nein Nein Nein Nein Nein Nein Nein

Default Werte 'fett'

> Rangierung der HART Variablen. Nur bei HART Modulen in Betriebsart mit HV verfügbar!

Kopplungsbeschreibung EtherNet/IP

3.5.2.2 AUMH 9468/...

Parameter	Defaultwert	Auswahl
Diagnose Meldungen des Moduls	Ein	Aus Ein
Signal Filter	mittel	Klein mittel groß (50 Hz) groß (60 Hz)
Verhalten im Fehlerfall S 0	Al Status Code / AO 0%	10.07 (1 1)
Verhalten im Fehlerfall S 1	Al Status Code / AO 0%	-10 % (nur 4 mA)
Verhalten im Fehlerfall S 2	Al Status Code / AO 0%	0 % 100 %
Verhalten im Fehlerfall S 3	Al Status Code / AO 0%	Al Status Code / AO 0%
Verhalten im Fehlerfall S 4	Al Status Code / AO 0%	110 %
Verhalten im Fehlerfall S 5	Al Status Code / AO 0%	Halten (Initialwert 0%)
Verhalten im Fehlerfall S 6	Al Status Code / AO 0%	Halten (Initialwert 100%)
Verhalten im Fehlerfall S 7	Al Status Code / AO 0%	Traitori (iriitarwort 10070)
Fehlerüberwachung S 0	Ein	
Fehlerüberwachung S 1	Ein	
Fehlerüberwachung S 2	Ein	
Fehlerüberwachung S 3	Ein	Aus
Fehlerüberwachung S 4	Ein	Ein
Fehlerüberwachung S 5	Ein	
Fehlerüberwachung S 6	Ein	
Fehlerüberwachung S 7	Ein	
Signal Bereich S 0	420 mA	
Signal Bereich S 1	420 mA	
Signal Bereich S 2	420 mA	
Signal Bereich S 3	420 mA	020 mA
Signal Bereich S 4	420 mA	420 mA
Signal Bereich S 5	420 mA	
Signal Bereich S 6	420 mA	
Signal Bereich S 7	420 mA	
Messber. grenzen gem. NAMUR E 0	Nein	_
Messber. grenzen gem. NAMUR E 1	Nein	
Messber. grenzen gem. NAMUR E 2	Nein	
Messber. grenzen gem. NAMUR E 3	Nein	Nein *1)
Messber. grenzen gem. NAMUR E 4	Nein	Ja
Messber. grenzen gem. NAMUR E 5	Nein	_
Messber. grenzen gem. NAMUR E 6	Nein	
Messber. grenzen gem. NAMUR E 7	Nein	

*1) Die Parameter 'Messber. grenzen gem. NAMUR' gelten nur für Input Signale! Bei umschaltbaren Al/AO Signalen ist der Parameter aber immer sichtbar und bei AO wirkungslos!

Signaltyp S0 *2)		
Signaltyp S1		
Signaltyp S2		
Signaltyp S3	Analog Input	Analog Input
Signaltyp S4	Analog Input	Analog Output
Signaltyp S5		
Signaltyp S6		
Signaltyp S7		

*2) Der Parameter '**Signaltyp Sx**' wird nur bei Al/AO umschaltbaren Kanälen in den Betriebsarten 9468/3x-08-xx 8AIH/8AOH (+4HV / +8HV) zur Verfügung gestellt.

Kopplungsbeschreibung EtherNet/IP

Scan HART Livelist	Ein	Aus Ein
Kanal Nr. HART Gerät für Pos. 1	Nicht verwendet	
Kanal Nr. HART Gerät für Pos. 2	Nicht verwendet	
Kanal Nr. HART Gerät für Pos. 3	Nicht verwendet	
Kanal Nr. HART Gerät für Pos. 4	Nicht verwendet	07
Kanal Nr. HART Gerät für Pos. 5	Nicht verwendet	'Nicht verwendet'
Kanal Nr. HART Gerät für Pos. 6	Nicht verwendet	
Kanal Nr. HART Gerät für Pos. 7	Nicht verwendet	
Kanal Nr. HART Gerät für Pos. 8	Nicht verwendet	
HART Variable für Pos. 1	HART Variable Nr. 2	
HART Variable für Pos. 2	HART Variable Nr. 2	
HART Variable für Pos. 3	HART Variable Nr. 2	HART Variable Nr. 1
HART Variable für Pos. 4	HART Variable Nr. 2	HART Variable Nr. 2
HART Variable für Pos. 5	HART Variable Nr. 2	HART Variable Nr. 3
HART Variable für Pos. 6	HART Variable Nr. 2	HART Variable Nr. 4
HART Variable für Pos. 7	HART Variable Nr. 2	
HART Variable für Pos. 8	HART Variable Nr. 2	

Rangierung der HART Variablen. Nur bei HART Modulen in Betriebsart mit HV verfügbar!

Kopplungsbeschreibung EtherNet/IP

3.5.2.3 UMH 9469 Exn

Parameter	Defaultwert	Auswahl
Diagnose Meldungen des Moduls	Ein	Aus <i>Ein</i>
Signal Filter	mittel	Klein mittel groß (50 Hz) groß (60 Hz)
DI Impulsverlängerung 1,2 s	Aus	Aus Ein
Messber. grenzen gem. NAMUR	Nein	Nein *1) Ja
Signal Bereich	4-20 mA	0-20 mA 4-20 mA
Verhalten im Fehlerfall S 0	AI Status Code / AO 0% / 0	
Verhalten im Fehlerfall S 1	Al Status Code / AO 0% / 0	-10 % (nur 4 mA) / 0
Verhalten im Fehlerfall S 2	Al Status Code / AO 0% / 0	0 % /0
Verhalten im Fehlerfall S 3	Al Status Code / AO 0% / 0	100 % /1
Verhalten im Fehlerfall S 4	Al Status Code / AO 0% / 0	Al Status Code / AO110 % / 1
Verhalten im Fehlerfall S 5	Al Status Code / AO 0% / 0	- Al Status Code / AO 0% / 0 - Halten (Initialwert 0% / 0)
Verhalten im Fehlerfall S 6	Al Status Code / AO 0% / 0	Halten (Initialwert 0% / 0) Halten (Initialwert 100% / 1)
Verhalten im Fehlerfall S 7	Al Status Code / AO 0% / 0	- Halleri (Illillalwert 100% / 1)
Fehlerüberwachung S 0	Ein	
Fehlerüberwachung S 1	Ein	
Fehlerüberwachung S 2	Ein	
Fehlerüberwachung S 3	Ein	Aus
Fehlerüberwachung S 4	Ein	Ein
Fehlerüberwachung S 5	Ein	
Fehlerüberwachung S 6	Ein	
Fehlerüberwachung S 7	Ein	
Signal Art S0	2 Leiter analog	
Signal Art S1	2 Leiter analog	2 Laitar analas
Signal Art S2	2 Leiter analog	2 Leiter analog
Signal Art S3	2 Leiter analog	
Signal Art S4	2 Leiter analog	0.1 - 1/2 1
Signal Art S5	2 Leiter analog	2 Leiter analog
Signal Art S6	2 Leiter analog	3/4 Leiter analog (nur Input)
Signal Art S7	2 Leiter analog	digital
Signaltyp S0		
Signaltyp S1		
Signaltyp S2		
Signaltyp S3	Input	Input *2)
Signaltyp S4	Input	Output
Signaltyp S5		
Signaltyp S6		
Signaltyp S7		

Scan HART Livelist	Ein	Aus Ein	
Kanal Nr. HART Gerät für Pos. 1	Nicht verwendet		
		07 'Nicht verwendet'	
Kanal Nr. HART Gerät für Pos. 8	Nicht verwendet	Thome for mondet	
HART Variable für Pos. 1	HART Variable Nr. 2	HART Variable Nr. 1	
		HART Variable Nr. 2 HART Variable Nr. 3	
HART Variable für Pos. 8	HART Variable Nr. 2	HART Variable Nr. 4	

Rangierung der HART Variablen. Nur bei HART Modulen in Betriebsart mit HV verfügbar!

Kopplungsbeschreibung EtherNet/IP

Parameter Abhängigkeiten / Wirkung

	Parameter						
Schaltungsart	Signal Typ	Signal Art	Signal Bereich	Fehler- überwachung	Messber. grenzen gem. NAMUR	Verhalten im Fehlerfall	Input Filter
2- Leiter 0/4-20 mA Eingang	Input	2 Leiter analog	0-20 / 4-20		Ja / Nein		
2/3- Leiter Initiator Eingang	Input	2/3 Leiter digital	-	- 0-20 / 4-20 Ein / Aus 0-20 / 4-20	-	-10 % (nur 4 mA) / 0	Klein mittel groß (50 Hz) groß (60 Hz)
3/4- Leiter 0/4-20 mA Eingang	Input	3/4 Leiter analog (nur Input)			Ja / Nein		
2- Leiter 0/4-20 mA Ausgang	Output	2 Leiter analog			-	Halten (Initialwert 100% / 1)	-
Digitaler Ausgang	Output	2/3 Leiter digital	-		-		-

^{*1)} Die Parameter 'Messber. grenzen gem. NAMUR' wirken nur bei analogen Input Signalen! Bei umschaltbaren AI/AO/DI/DO Signalen ist der Parameter immer sichtbar und bei AO, DI und DO wirkungslos!

^{*2)} Der Parameter '**Signal Typ**' wird nur bei umschaltbaren Kanälen in den Betriebsarten mit 8I + 8O zur Verfügung gestellt.

Kopplungsbeschreibung EtherNet/IP

3.5.2.4 TIMR 9480/..

Parameter	Defaultwert	Wertebereich / Auswahl
Diagnose Meldungen des Moduls	Ein	Aus Ein
Input Filter	50 Hz	50 Hz 60 Hz Aus (nicht empfohlen)
Betriebsart	8 Eingänge	8 Eingänge 2 Eingänge
Verhalten im Fehlerfall E 0	Status Code	
Verhalten im Fehlerfall E 1	Status Code	
Verhalten im Fehlerfall E 2	Status Code	
Verhalten im Fehlerfall E 3	Status Code	Status Code
Verhalten im Fehlerfall E 4	Status Code	Halten (Initialisierungswert 0%)
Verhalten im Fehlerfall E 5	Status Code	
Verhalten im Fehlerfall E 6	Status Code	
Verhalten im Fehlerfall E 7	Status Code	
Fehlerüberwachung E 0	Ein	
Fehlerüberwachung E 1	Ein	
Fehlerüberwachung E 2	Ein	
Fehlerüberwachung E 3	Ein	Aus
Fehlerüberwachung E 4	Ein	Ein
Fehlerüberwachung E 5	Ein	
Fehlerüberwachung E 6	Ein	
Fehlerüberwachung E 7	Ein	
Typ E 0	Pt 100	Pt100 Pt500
Typ E 1	Pt 100	Pt1000 Pt1000 Ni100
Typ E 2	Pt 100	Ni500 Ni1000
Typ E 3	Pt 100	Widerstand 10k Widerstand 5k
Typ E 4	Pt 100	Widerstand 2k5 Widerstand 500R
Typ E 5	Pt 100	Pt100 GOST
Тур Е 6	Pt 100	M100 GOST Cu53 GOST
Тур Е 7	Pt 100	Pt46 GOST ab Fw. V02-05 Pt50 GOST
Schaltungsart E 0	4 Leiter	
Schaltungsart E 1	4 Leiter	
Schaltungsart E 2	4 Leiter	
Schaltungsart E 3	4 Leiter	2 Leiter
Schaltungsart E 4	4 Leiter	3 Leiter 4 Leiter
Schaltungsart E 5	4 Leiter	
Schaltungsart E 6	4 Leiter	
Schaltungsart E 7	4 Leiter	

Kopplungsbeschreibung EtherNet/IP

3.5.2.5 TIM mV 9481/..

Parameter	Defaultwert	Wertebereich / Auswahl	
Diagnose Meldungen des Moduls	Ein	Aus <i>Ein</i>	
Input Filter	50 Hz	50 Hz 60 Hz	
Verhalten im Fehlerfall E 0 Status Code			
Verhalten im Fehlerfall E 1	Status Code		
Verhalten im Fehlerfall E 2	Status Code		
Verhalten im Fehlerfall E 3	Status Code	Status Code	
Verhalten im Fehlerfall E 4	Status Code	Halten (Initialisierungswert 0%)	
Verhalten im Fehlerfall E 5	Status Code		
Verhalten im Fehlerfall E 6	Status Code		
Verhalten im Fehlerfall E 7	Status Code		
Fehlerüberwachung E 0	Ein		
Fehlerüberwachung E 1	Ein		
Fehlerüberwachung E 2	Ein		
Fehlerüberwachung E 3	Ein	Aus	
Fehlerüberwachung E 4	Ein	Ein	
Fehlerüberwachung E 5	Ein		
Fehlerüberwachung E 6	Ein		
Fehlerüberwachung E 7	Ein		
Typ E 0	THC Typ K	0100 mV	
Typ E1	THC Typ K	THC Typ B THC Typ E	
Typ E 2	THC Typ K	THC Typ J	
Typ E 3	THC Typ K	THC Typ K THC Typ N	
Typ E 4	THC Typ K	THC Typ R	
Typ E 5	THC Typ K	THC Typ S THC Typ T	
Typ E 6	THC Typ K	THC Typ L	
Typ E 7	THC Typ K	THC Typ U THC Typ XK (L)	
Eingangssignal E 0	symmetrisch		
Eingangssignal E 1	symmetrisch		
Eingangssignal E 2	symmetrisch		
Eingangssignal E 3	symmetrisch	symmetrisch	
Eingangssignal E 4	symmetrisch	unsymmetrisch	
Eingangssignal E 5	symmetrisch		
Eingangssignal E 6	symmetrisch		
Eingangssignal E 7	symmetrisch		

Kopplungsbeschreibung EtherNet/IP

3.5.2.6 TIM 9482

Parameter	Defaultwert	Wertebereich / Auswahl
Diagnose Meldungen des Moduls	Ein	Aus <i>Ein</i>
Modul Betriebsart	8 Kanal genau	8 Kanal genau 4 Kanal schnell
Verhalten im Fehlerfall E 0	Status Code	
Verhalten im Fehlerfall E 1	Status Code	
		Status Code Halten (Initialisierungswert 0%)
Verhalten im Fehlerfall E 6	Status Code	Traiterr (irritialisierurigswert 070)
Verhalten im Fehlerfall E 7	Status Code	
Fehlerüberwachung E 0	Ein	
Fehlerüberwachung E 1	Ein	
		Aus
Fehlerüberwachung E 6	Ein	Ein
Fehlerüberwachung E 7	Ein	
-		Intern
Auswahl TC Vergleichsstelle	Intern	Extern 3 Leiter
Typ TC ext. Vergleichsstelle E0-E2	PT100	PT100 PT1000 PT100 GOST
Тур Е 0	Pt 100	Pt100 Pt500 Pt1000
Тур Е 1	Pt 100	Ni100 Ni500 Ni1000 Widerstand (Poti) 10k
Typ E 2	Pt 100	Widerstand (Poti) 5k Widerstand (Poti) 2k5 Widerstand (Poti) 500R
Тур Е 3	Pt 100	Pt100 GOST M50 GOST M100 GOST Cu53 GOST
Тур Е 4	Pt 100	Pt46 GOST Pt50 GOST 0100 mV
Тур Е 5	Pt 100	THC Typ B THC Typ E THC Typ J THC Typ K
Тур Е 6	Pt 100	THC Typ N THC Typ R THC Typ S THC Typ T
Тур Е 7	Pt 100	THC Typ L THC Typ U THC Typ XK (L)
Schaltungsart (R) E 0 *1)	4 Leiter (R in Ohm)	
Schaltungsart (R) E 1	4 Leiter (R in Ohm)	2 Leiter (Poti in Ohm)
•••		3 Leiter (Poti in %)
Schaltungsart (R) E 6	4 Leiter (R in Ohm)	4 Leiter (Poti in Ohm) 4 Leiter (Poti in %)
Schaltungsart (R) E 7	4 Leiter (R in Ohm)	

^{*1)} Parameter 'Schaltungsart' bei THC nicht wirksam. THC immer in 2 Leiter Messung.

Kopplungsbeschreibung EtherNet/IP

3.5.2.7 DIM (9470/3x im kompatiblen Mode)

Parameter	Defaultwert	Wertebereich / Auswahl
Diagnose Meldungen des Moduls	Ein	Aus Ein
Verhalten im Fehlerfall E 0		
Verhalten im Fehlerfall E 1		0
	0	1 Halten (Initialwert 0)
Verhalten im Fehlerfall E 14		Halten (Initialwert 1)
Verhalten im Fehlerfall E 15		
Fehlerüberwachung E 0		
Fehlerüberwachung E 1		
	Ein	Aus <i>Ein</i>
Fehlerüberwachung E 14		
Fehlerüberwachung E 15		
Invertierung E 0		
Invertierung E 1		Nein Ja
	Nein	
Invertierung E 14		
Invertierung E 15		
Impulsverlängerung E 0		
Impulsverlängerung E 1		0 s
	0 Sek.	0,6 s 1,2 s
Impulsverlängerung E 14		2,4 s
Impulsverlängerung E 15		
Betriebsart E 14	Freq. 0-1 kHz / DI	Zähler
Zählereignis E 14	positive Flanke	positive Flanke negative Flanke
Betriebsart E 15	Freq. 0-1 kHz / DI	S. O.
Zählereignis E 15	positive Flanke	S. O.

Parameter nicht vorhanden bei DIM 24 V! (9471/...)

Parameter nur bei Betriebsart DIM16 + CF verfügbar!

Kopplungsbeschreibung EtherNet/IP

3.5.2.8 DIOM 9470/3x (IS1+)

Parameter	Defaultwert	Wertebere Auswahl		
Diagnose Meldungen des Moduls	Ein	Aus <i>Ein</i>		
Verhalten im Fehlerfall S 0				1
Verhalten im Fehlerfall S 1		0		
Verhalten im Fehlerfall S 2		1		
	0	Halten (Initialwert 0) Halten (Initialwert 1)		
Verhalten im Fehlerfall S 14				
Verhalten im Fehlerfall S 15				
Fehlerüberwachung S 0				1
Fehlerüberwachung S 1				
Fehlerüberwachung S 2	Fin	Aus		
	Ein	Ein		
Fehlerüberwachung S 14				
Fehlerüberwachung S 15				
Invertierung DI S0, S1				1
Invertierung DI S2, S3				
Invertierung DI S4, S5		Nein		
Invertierung DI S6, S7		Ja (invertiere	n)	
Invertierung DI S8, S9	Nein	(wirkt nur auf DI Signale)		
Invertierung DI S10, S11				
Invertierung DI S12, S13				
Invertierung DI S14, S15				
Impulsverl. / Filter S0, S1				1
Impulsverl. / Filter S2, S3		0 s / Aus 0,6 s / Klein 1,2 s / Mittel		Filter nu
Impulsverl. / Filter S4, S5				Frequer
Impulsverl. / Filter S6, S7				wirksam
Impulsverl. / Filter S8, S9	0 Sek.			Impulsv
Impulsverl. / Filter S10, S11		2,4 s / Groß		DI/Zähle
Impulsverl. / Filter S12, S13				wirksam
Impulsverl. / Filter S14, S15				
Signaltyp S0, S1				1
Signaltyp S2, S3				
Signaltyp S4, S5		9470/3x	9471/35, 9472/35	Paramet
Signaltyp S6, S7	-			Betriebs
Signaltyp S8, S9	Eingang	Eingang Ausgang	NAMUR Ini/ Kontakt 3-Leiter Initiator PNP	vorhand
Signaltyp S10, S11		Ausgang	Ausgang	
Signaltyp S12, S13				
Signaltyp S14, S15				
Betriebsart S8, S9		0 = Zähler 16 Bit	00 Hz (0,01Hz/Bit)])
Betriebsart S10, S11	Freq. 1Hz - 3kHz	2 = Freq. 1 Hz -	3 kHz (0,05Hz/Bit)	
Betriebsart S12, S13	(0,05Hz/Bit)	3 = Freq. 1 Hz - 20 kHz (0,5Hz/Bit) 4 = Up/Down Counter 16 Bit 5 = Up/Down Counter 32 Bit		
Betriebsart S14, S15			unter 32 Bit 20 kHz mit Richtung	Parar Betrie
Zählereignis S8, S9				(Zähl verfü
Zählereignis S10, S11	positive Flanke	positive Flan		
Zählereignis S12, S13	positive i latine	negative Flank	ке	
Zählereignis S14, S15]

ır bei nz Messung

erl. nur bei

ter nur in sart DI/DO

meter nur bei ebsarten mit CF ler/Frequenz) gbar!

Kopplungsbeschreibung EtherNet/IP

3.5.2.9 AOM / AOMH

Parameter	Defaultwert	Wertebereich / Auswahl	
Diagnose Meldungen des Moduls	Ein	Aus Ein	
Verhalten im Fehlerfall A 0	0 %		
Verhalten im Fehlerfall A 1	0 %		
Verhalten im Fehlerfall A 2	0 %	-10 % (nur 4 mA)	
Verhalten im Fehlerfall A 3	0 %	0 % 100 %	
Verhalten im Fehlerfall A 4	0 %	110 %	
Verhalten im Fehlerfall A 5	0 %	Halten	
Verhalten im Fehlerfall A 6	0 %	- I raison	
Verhalten im Fehlerfall A 7	0 %		
Fehlerüberwachung A 0	Ein		
Fehlerüberwachung A 1	Ein		
Fehlerüberwachung A 2	Ein		
Fehlerüberwachung A 3	Ein	Aus	
Fehlerüberwachung A 4	Ein	Ein	
Fehlerüberwachung A 5	Ein		
Fehlerüberwachung A 6	Ein		
Fehlerüberwachung A 7	Ein		
Ausgangsbereich A 0	420 mA		
Ausgangsbereich A 1	420 mA		
Ausgangsbereich A 2	420 mA		
Ausgangsbereich A 3	420 mA	020 mA	
Ausgangsbereich A 4	420 mA	420 mA	
Ausgangsbereich A 5	420 mA		
Ausgangsbereich A 6	420 mA		
Ausgangsbereich A 7	420 mA		
Scan HART Livelist	Ein	Aus Ein	
Ausgang Nr. HART Gerät für Pos. 1	Nicht verwendet		
Ausgang Nr. HART Gerät für Pos. 2	Nicht verwendet		
Ausgang Nr. HART Gerät für Pos. 3	Nicht verwendet		
Ausgang Nr. HART Gerät für Pos. 4	Nicht verwendet		
Ausgang Nr. HART Gerät für Pos. 5	Nicht verwendet	07	
Ausgang Nr. HART Gerät für Pos. 6	Nicht verwendet	Nicht verwendet	
Ausgang Nr. HART Gerät für Pos. 7	Nicht verwendet		
Ausgang Nr. HART Gerät für Pos. 8	Nicht verwendet		
Nr. HART Variable für Pos. 1	HART Variable Nr. 2		
Nr. HART Variable für Pos. 2	HART Variable Nr. 2		
Nr. HART Variable für Pos. 3	HART Variable Nr. 2	HART Variable Nr. 1	
Nr. HART Variable für Pos. 4	HART Variable Nr. 2	HART Variable Nr. 2	
Nr. HART Variable für Pos. 5	HART Variable Nr. 2	HART Variable Nr. 3	
Nr. HART Variable für Pos. 6	HART Variable Nr. 2	HART Variable Nr. 4	
Nr. HART Variable für Pos. 7	HART Variable Nr. 2		
Nr. HART Variable für Pos. 8	HART Variable Nr. 2		

Nur bei HART Modulen (AOMH) verfügbar!

Kopplungsbeschreibung EtherNet/IP

3.5.2.10 DOM

Parameter	Defaultwert	Wertebereich /	Parameter vorhanden			
		Auswahl	DOM	DOMR	DOMV	
Diagnose Meldungen des Moduls	Ein	Aus Ein	✓	✓	✓	
Verhalten im Fehlerfall A 0	0					
Verhalten im Fehlerfall A 1	0					
Verhalten im Fehlerfall A 2	0					
Verhalten im Fehlerfall A 3	0	0	✓	✓	✓	
Verhalten im Fehlerfall A 4	0	Halten letzter Wert				
Verhalten im Fehlerfall A 5	0	Traitor locator Wort				
Verhalten im Fehlerfall A 6	0					
Verhalten im Fehlerfall A 7	0					
Fehlerüberwachung A 0	Ein					
Fehlerüberwachung A 1	Ein		✓	-	-	
Fehlerüberwachung A 2	Ein					
Fehlerüberwachung A 3	Ein	Aus Ein ohne Prüfstrom				
Fehlerüberwachung A 4	Ein	Ein onne Pruistioni Ein				
Fehlerüberwachung A 5	Ein					
Fehlerüberwachung A 6	Ein					
Fehlerüberwachung A 7	Ein					
Ausgang 0 und 1 parallel	Ausgänge einzeln					
Ausgang 2 und 3 parallel	Ausgänge einzeln	Ausgänge einzeln	✓	✓	_	
Ausgang 4 und 5 parallel	Ausgänge einzeln	Ausgänge parallel	•		-	
Ausgang 6 und 7 parallel	Ausgänge einzeln					

Kopplungsbeschreibung EtherNet/IP

3.6 Datenwortaufbau der I/O - Module

3.6.1 I/O - Baugruppen analog

Analogsignale werden zwischen der IS1+ Feldstation und einem Automatisierungssystem im 16 Bit Zweierkomplement Format (signed Integer) ausgetauscht. Die Umrechnung von und zu Gleitkommavariablen mit physikalischer Größe ist bei Bedarf im Automatisierungssystem durchzuführen.

3.6.1.1 AIM, AIMH (9460/..., 9461/..., 9468/..., 9469/...)

Messbereich	Einh	eiten	0/	Parameter:	Danaiak	Diagnose	
0 – 20 mA	dezimal	Hex	%	Messbereichsgrenzen gemäß NAMUR	Bereich	Meldungen	
> 23,518 mA >21 mA	*1)	*1)		Nein Ja		Kurzschluss	
23,518 mA 21 mA	32511 29030	7EFF 7166	117,6% 105%	Nein Ja	Übersteuerungs- bereich	-	
20 mA	27648	6C00	100%				
10 mA	13824	3600	50%		Nennbereich	-	
0 mA	0	0	0%				
< 0 mA	0	0	0%				

Messbereich	Einh	eiten	0/	Parameter:	Damaiak	Diagnose
4 – 20 mA	dezimal	Hex	%	Messbereichsgrenzen gemäß NAMUR	Bereich	Meldungen
>22,814 mA >21 mA	*1)	*1)		Nein Ja		Kurzschluss
22,814 mA	32511	7EFF	117,6%	Nein	Übersteuerungs-	
21 mA	29376	72C0	106,25%	Ja	bereich	-
20 mA	27648	6C00	100%			
12 mA	13824	3600	50%		Nennbereich	-
4 mA	0	0	0%			
3,999 mA	-1	FFFF			Untersteuerungs-	
3,6 mA	-691	FD4D	-2,5%	Ja	bereich	-
2,4 mA	-2765	F533	-10%	Nein		
< 3,6 mA < 2,4 mA	*1)	*1)		Ja Nein		Leitungsunter- brechung

*1) Übertragener Wert abhängig von parametriertem Verhalten im Fehlerfall:

Parametriertes Verhalten im Fehlerfall	Fehlerfall	Im Fehlerfall übertragener Wert		
Halten		Letzter gültiger Wert		
-10%	Alla IO Madul Fabler	-2765	0xF533	
0%	Alle IO-Modul Fehler	0	0x0000	
100%		27648	0x6C00	
	Kurzschluss	32767	0x7FFF	
	Leitungsbruch	-32762	0x8006	
Status Code	Fehler bei 2 Leiter Abgleich	-32749	0x8013	
Status Code	Parametrierfehler	-32748	0x8014	
Globale Auswertung zur Statusbildung im AS für alle AI Signale :	Anlagen Aus	-32747	0x8015	
Signal ist gestört wenn Wert >= 32512 oder Wert <= -32512)	IOM meldet sich nicht	-32736	0x8020	
siehe auch Verhalten der Eingabesignale im Fehlerfall	Konfig. ungleich Baugruppe	-32735	0x8021	
	Daten nicht verfügbar	-32734	0x8022	
	IOM Hardware Fehler	-32733	0x8023	

Kopplungsbeschreibung EtherNet/IP

Messbereichsgrenzen gemäß NAMUR:

Die Grenze des Messbereiches zum Kurzschluss- und Leitungsunterbrechungsbereich kann über den Parameter 'Messbereichsgrenzen gemäß NAMUR' bei allen AIM gemäß obiger Tabelle gewählt werden. Bei 9468 AUMH und 9469 UMH gelten die Parameter 'Messber. grenzen gem. NAMUR' nur für Input Signale! Bei umschaltbaren AI/AO Signalen ist der Parameter immer sichtbar und bei AO wirkungslos! Dieser Parameter ist verfügbar ab Firmware Version V01-02 aller AIM und AIMH Module (9460/.. und 9461/..).

Bei Modulen mit älteren Firmwareständen ist dieser Parameter nicht wirksam. Diese Module arbeiten mit der festen Einstellung 'Messbereichsgrenzen gem. NAMUR = Nein'.

Datenstrukturen siehe Analog Input / Output / Universal Modul – AIM / AOM / AUM / UMH

Kopplungsbeschreibung EtherNet/IP

3.6.1.2 TIM (9480/..., 9481/..., 9482/...)

Temperaturmessung (1 Digit = 0,1 °C)

Tomporotur	Ein	heiten	Bereich	Diagnose Meldungen
Temperatur	Dezimal	hexadezimal	Dereich	Diagnose Meldungen
	*1)	*1)		Leitungsunterbrechung / Oberer Grenzwert überschritten
*2)	*2)	*2)		
1000 °C	10000	2710		
1 °C	10	000A		
0 °C	0	0	Temperatur Messbereich	
- 0,1 °C	-1	FFFF		
-100 °C	-1000	FC18		
*2)	*2)	*2)		
	*1)	*1)		Unterer Grenzwert unterschritten / Kurzschluss

^{*2)} Der erfassbare Temperaturbereich ist abhängig vom parametrierten Eingangstyp (siehe Betriebsanleitung IS1)

2 Leiter und 4 Leiter Widerstandsmessung Poti in Ohm 500 R ...10K (Modul 9480/..., 9482/..)

	Messbereiche			Einheiten				Diagnose
500R	2K5	5 K	10 K	dezimal	hexa- dezimal	%	Bereich	Meldungen
>588 R	>2,94 K	>5,88 K	>11,76K	*1)	*1)			Leitungs- unterbrechung
588 R	2,94 K	5,88 K	11,76 K	32511	7EFF	117,6%	Übersteue- rungsbereich	-
500 R	2K5	5 K	10 K	27648	6C00	100%		
250 R	1K250	2K5	5 K	13824	3600	50%	Nennbereich	-
0 K	0 K	0 K	0 K	0	0	0%		

3 Leiter und 4 Leiter Widerstand Stellungsmessung Poti in % 500 R ..10K (Modul 9480/.., 9482/..)

Messbereiche			Einheiten			Diagno	Diagnose	
500R	2K5	5 K	10 K	dezimal	hexa- dezimal	% Bereich		Meldungen
>588 R	>2,94 K	>5,88 K	>11,76K	*1)	*1)			Leitungs- unterbrechung
	Stellung 100 %			27648	6C00	100%		
	Stellung 50 %		13824	3600	50%	Nennbereich	-	
Stellung 0 %		Ö	Ô	0%				
< 50 R	< 250 R	< 500 R	< 1 K	*1)	*1)			Kurzschluss

0,02 R 0,1 R 0,2 R 0,4 R Auflösung pro Digit
--

Hinweis: 9480 unterstützt keine 4 Leiter Leiter Widerstand Stellungsmessung in %

Kopplungsbeschreibung EtherNet/IP

0 ... 100 mV Messung (bei 9481/..)

Messbereich	Ein	heiten	%	Bereich	Diagnose Meldungen
0 100 mV	Dezimal	Hexadezimal	70	Dereich	Diagnose Weidungen
>117,6 mV	*1)	*1)			Oberer Grenzwert überschritten
117,6 mV	32511	7EFF	117,6 %	Übersteuerungsbereich	-
100 mV	27648	6C00	100 %		
50 mV	13824	3600	50 %	Nennbereich	-
0 mV	0	0	0 %		
-0,0036 mV	-1	FFFF		Untersteuerungsbereich	
-10 mV	-2765	F533	-10 %	(9481/)	-
-117,6 mV	-32511	8101	-117,6%	(9482/)	
<	*1)	*1)			Unterer Grenzwert unterschritten

Kurzschluss kann bei Widerstands- und mV Messung nicht erkannt werden!

*1) Übertragener Wert abhängig von parametriertem Verhalten im Fehlerfall:

Parametriertes Verhalten im Fehlerfall	Fehlerfall	lm Fehlerfall übertragener Wert		
Halten	Alle IO-Modul Fehler	Letzter gültiger Wert		
	Kurzschluss *2)	+/- 32767	7FFF / 8001	
	Leitungsbruch *2)	+/- 32762	7FFA / 8006	
	Oberer Grenzwert überschritten	32761	7FF9	
Status Code	Unterer Grenzwert unterschritten	-32760	8008	
Globale Auswertung zur Statusbildung im AS für alle AI Signale:	Fehler Vergleichsstelle	-32752	8010	
Signal ist gestört wenn Wert >= 32512 oder Wert <= -32512	Fehler bei 2 Leiter Abgleich	-32749	8013	
siehe auch Verhalten der Eingabesignale im Fehlerfall	IOM meldet sich nicht	-32736	8020	
Vernateri dei Eingabesignate in i einerian	Konfig. ungleich Baugruppe	-32735	8021	
	Daten nicht verfügbar	-32734	8022	
	Hardwarefehler IOM	-32733	8023	

*2) abhängig von der Richtung der Signaländerung beim jeweiligen Fehlerfall wird ein positiver oder negativer Status Code verwendet:

Fehlerart	TIM R 9480/ TIM 9482/ (R Messung)	TIM mV 9481/ TIM 9482/ (mV Messung)
Kurzschluss	-32767 (8001)	nicht erkennbar
Leitungsbruch	+32762 (7FFA)	-32762 (8006)

Ein optionaler Leitungsabgleich bei Verwendung der 2 Leiter Schaltung und TIM 9482/.. kann über die autimatische Kalibrierfunktion der 9482 Baugruppen oder über die Bedienschnittstelle der 9441 CPU erfolgen. Siehe auch Betriebsanleitung 9482.

Kopplungsbeschreibung EtherNet/IP

3.6.1.3 AOM, AOMH (9465/..., 9466/..., 9468/..)

0 - 20 mA

Messbereich	Einhe	heiten % Bereich		Boroich
0 – 20 mA	dezimal	hexadezimal	/0	Bereich
*1)	>30137	>75B9		
21,8 mA	30137	75B9	109%	
	•			Übersteuerungsbereich
20 mA	27648	6C00	100%	
10 mA	13824	3600	50%	Nennbereich
0 mA	0	0	0%	
0 mA	< 0	< 0		

4 - 20 mA

Messbereich	Einhe	eiten	%	Bereich
4 – 20 mA	Dezimal	Hexadezimal	70	Dereich
*1)	>30759	>7827		
21,8 mA	30759	7827	111,25%	
				Übersteuerungsbereich
				-
20 mA	27648	6C00	100%	
12 mA	13824	3600	50%	Nennbereich
4 mA	0	0	0%	
3,999 mA	-1	FFFF		
				Untersteuerungsbereich
0 mA	-6912	E500	-25%	
0 mA	< -6912	< E500		

^{*1):} Das AOM versucht den Strom entsprechend dem Steuerwert weiter zu erhöhen. Abhängig vom Bürdenwiderstand wird hierbei jedoch die maximale Ausgangsspannung des AOM erreicht, wodurch eine weitere Erhöhung des Stromes nicht mehr möglich ist.

Sicherheitsstellung nach Power On:

Nach Power On der IS1+ CPU wird in den Datenbereich der Output Signale der Wert -32768 (0x8000) als Kennung für die Sicherheitsstellung der Output Signale eingetragen.

Die Output Signale verbleiben so lange in Sicherheitsstellung, bis das zugehörige Register mit einem gültigen Ausgabewert (<> -32768 (0x8000)) vom AS oder IS1 DTM überschrieben wird.

Kopplungsbeschreibung EtherNet/IP

3.6.2 DIM, DIM+CF (9470/.. 9471/.. 9472/..)

Bei den Baugruppen 9470, 9471 und 9472 können ein Teil der verfügbaren 16 Kanäle optional als Digitaleingang (DI), Zähler- (C) oder Frequenzeingang (F) verwendet werden.

Durch Auswahl verschiedener Modulbeschreibungen kann bei der Konfigurierung der im zyklischen Datenverkehr übertragene Datenbereich gewählt werden:

Modul Auswahltext		Input Daten [Byte]	Output Daten [Byte]	CF Kanäle	Mögliche Signaltypen
DIM 16 (9470/ , 9471/)		2 (16 Bit DI)	-	-	DI ohne Status
9470 /16-1. DIM 16 9471 /16-1. DIM 16		4 (16 Bit DI + 16 Bit Status)	-	-	DI mit Status
9470 /16-1. DIM 16+CF 9471 /16-1. DIM 16+CF		8 (16 Bit DI + 16 Bit Status + 2 Worte CF)	1 (Steuerregister für Zähler)	14 – 15	DI und CF (Counter oder Frequenz) mit Status
	DIM 16	4	0	ı	DI mit Status
9470/3x-16-xx	DI/DO 16	4	2	ı	DI oder DO mit Status
9471/35-16-xx	DI/DO 16+2CF	8	4	14 - 15	
9472/35-16-xx	DI/DO 16+6CF	16	4	10 - 15	DI und CF oder DO mit Status
	DI/DO 16+8CF	18	4	10 - 15	

DI Signalzuordnung (Parameter 'Invertiere Eingang/Signal x = Nein'):

9470/	9471/	
I < 0,05 mA	-	Leitungsunterbrechung
I < 1,2 mA	U < 5 V	Signal = 0
I > 2,1 mA	U > 13 V	Signal = 1
R _L < 100 Ohm	-	Kurzschluss

Auch in den Betriebsarten mit CF (Zähler/Frequenz) werden die DI Signale im DI Datenbereich aktualisiert und sind somit auch in dieser Betriebsart als DI Signale nutzbar.

Statuszuordnung:

Status Bit	Signal	
0	gestört	×
1	ОК	

Signale und Stati werden synchron und konsistent generiert und übertragen wenn Parameter 'Fehlerüberwachung' = Ein

Datenstrukturen siehe Digital Input / Output Module – DIM, DIOM

Kopplungsbeschreibung EtherNet/IP

Betriebsart 'Zähler'

Zählweise: Inkrementierend / dekrementierend mit Überlauf / Unterlauf

Zählereignis: Positive / Negative Flanke wählbar.

Verhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)

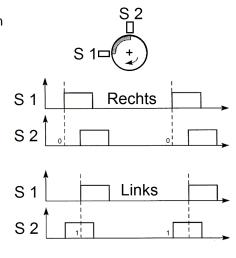
Diagnosen: Wertstatus und Kanaldiagnose

Reset: Rücksetzen des Zählregisters auf '0'

Start/Stop: Bei 'Stop' werden Eingangsimpulse verworfen.

Das Register wird nicht inkrementiert.

alle DIM mit Zähler (9470/3x im komp. Mode) DIOM 9470/3x (IS1+)		Zählbereich	Zählereignis
Zähler 16 Bit		UINT16	Inkrement bei Flanke
-	Up/Down Counter 16 Bit	0 – 65535	Inkrement / Dekrement abhängig
-	Up/Down Counter 32 Bit	UINT32 0 – 4.294.967.295	von Drehrichtung


Zähl- bzw. Drehrichtungs-Erkennung:

Für Zähler und Frequenzmessungen mit Drehrichtungserkennung bilden jeweils zwei DI Eingänge ein Paar. Über den Phasenversatz zweiter Sensorsignale wird die Drehrichtung ermittelt.

Die mechanische Anordnung der Sensoren muss

so gewählt werden, dass sich jeweils zwei Pulse überlappen.

Betriebsart	Anwendung
Up/Down Counter	Aufwärts oder abwärts zählen der Eingangsimpulse abhängig von der Drehrichtung
Frequenz mit Richtung	Drehzahl und Drehrichtungserkennung für rotierende Maschinen

Signalzuordnung in zyklischen Input Daten in Betriebsart Up/Down Counter oder Frequenz mit Richtung:

Input Daten	Anwendung
erstes DI Bit eines Paares	Digitaler Wert des ersten Eingangs.
zweites DI Bit eines Paares	Drehrichtung 0 = Rechts / vorwärts (Puls an erstem Eingang eines Paares kommt zu erst) 1 = Links / Rückwärts (Puls an zweitem Eingang eines Paares kommt zu erst)

Kopplungsbeschreibung EtherNet/IP

Signale und Status bei Betriebsart 'Zähler':

Zähler werden beim Hochlauf des IO-Moduls auf '0'gesetzt.

Der Signalstatus wird mit '0' = Signal gestört initialisiert.

Über das Reset Bit im Steuerregister wird das Zählerregister auf '0' gesetzt und der Signalstatus auf '1' = Signal OK gesetzt.

Beim Auftreten von Fehlerereignissen (Kurzschluss, Leitungsunterbrechung, Busausfall...) wird der Signalstatus auf '0' gesetzt und bis zum nächsten Reset auf '0' gehalten. Eine Störung eines Zählvorganges ist somit über den Signalstatus erkennbar.

Beim Verlust des Data Exchange mit dem AS und Wiederkehr innerhalb der Haltezeit für Ausgabemodule oder bei CPU Redundanz Umschaltung wird der Zählvorgang nicht gestört.

Bei Betrieb eines Eingangspaares als Up/Down Counter oder Frequenz mit Richtung wird bei einem Signal Fehler eines der beiden Eingänge die Statusbits beider Eingänge auf 0 = gestört gesetzt.

Zur **Summierung von 16 Bit Zählern** muss das AS jeweils die Differenz zweier aufeinanderfolgender Abfragen aufaddieren. Zählerüber- oder unterlaufe sind entsprechen zu erkennen und zu berücksichtigen. Der AS Zyklus muss so gewählt werden, dass pro AS Zyklus max. ein Zählerüber- oder unterlauf vorkommt.

32 Bit Zähler mit Richtungseingang:

Wird bei einem 32 Bit Up/Down Counter eines Kanal Paares nur der erste Eingang angeschlossen und mit Impulsen angesteuert, so kann dieser Zähler auch ohne Richtungserkennung verwendet werden. Das Richtungsbit braucht dann in der SPS nicht ausgewertet zu werden. Die Fehlerüberwachung (LU/KS Erkennung) des freien zweiten Eingangs ist mit 'Aus' zu parametrieren. Bei offenem zweiten Eingang werden Impulse des ersten Eingangs inkrementiert (Aufwärts Zählung). Wird der zweite Eingang kurz geschlossen, werden Impulse des ersten Eingangs dekrementiert (Abwärts Zählung).

Betriebsarten 'Frequenzmessung'

Modul	Max. Anz. Signale je Modul	Betriebsart	Messmethode	Skalierung [Hz / Bit]	Auflösung [Hz]
alle DIM mit		Frequenz 1 Hz - 1 kHz	Flankenmessung	0,05	+/- 0,05
Frequenz-	2	Frequenz 20 Hz - 20 kHz	requenz 20 Hz - 20 kHz Torzeit 50 ms		+/- 20
messung 2 (9470/3x im komp. Mode)	2	Frequenz 5 Hz - 20 kHz	Torzeit 200 ms	1	+/- 5
		Frequenz 1 Hz - 20 kHz	uenz 1 Hz - 20 kHz Torzeit 1 s		+/- 1
		Frequenz 0,1 - 600 Hz		0,01	+/- 0,01
DIOM 9470/3x,	6	Frequenz 1 Hz - 3 kHz		0,05	+/- 0,05
9471/35, 9472/35		Frequenz 1 Hz - 20 kHz	Flankenmessung	0,5	+/- 0,5
(IS1+)	3 Paare	Frequenz 1 Hz - 20 kHz mit Richtung		0,5	+/- 0,5

Kopplungsbeschreibung EtherNet/IP

Signalskalierung:

lle DIM mit Frequenzmessung (9470/3x im kompatiblen Mode):							
Messbe	ereiche	Einh	Einheiten		Danaiak		
1 Hz – 1 kHz	x – 20 kHz	Dez.	Hex	% *1)	Bereich		
1,3 kHz 1,1 kHz	- 22 kHz	26000 22000	6590 55F0	130 % 110 %	Übersteuerungsbereich		
1 kHz	20 kHz	20000	4E20	100 %			
500 Hz	10 kHz	10000	2710	50 %	Nennbereich		
0 Hz	0 kHz	0	0	0 %			

DIOM 9470/3x, 9471/35, 9472/35 (IS1+)							
	Messbereiche		Einheiten		% *1)	Bereich	
0,1 Hz - 600 Hz	1 Hz – 3 kHz	1 Hz - 20 kHz	Dez.	Hex	/0 1)	Bereich	
> 655,34 Hz	> 3,276 kHz	-	65535	0xFFFF		Overflow	
655,34 Hz	3,276 kHz	-	65534	0xFFFE	164 %	Übersteuerungsbereich	
600 Hz	3 kHz	-	60000	0xEA60	150 %		
440 Hz	2,2 kHz	22 kHz	44000	0xABE0	110 %		
400 Hz	2 kHz	20 kHz	40000	0x9C40	100 %		
500 Hz	1 kHz	10 kHz	20000	0x4E20	50 %	Nennbereich	
0 Hz	0 kHz	0 kHz	0	0x0000	0 %		

*1) Skalierung der Frequenzmessungen in IS1 DTM

alle DIM mit Frequenzmessung außer 9470/3x	Phys 0 – 100% entspricht Digital 0 – 20000
DIOM 9470/3x (IS1+)	Phys 0 – 100% entspricht Digital 0 – 40000

Signalverhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)

Diagnose: Signalstatus und Kanaldiagnose

Verhalten bei Frequenzüberschreitung:

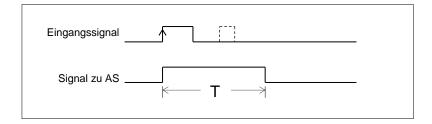
Bei Eingangsfrequenzen größer dem Maximum des eingestellten Messbereiches können nicht mehr alle Eingangsimpulse sicher erkannt werden. Es gehen Impulse bei der Auswertung verloren, wodurch der vom Modul ermittelte Messwert kleiner als die real vorhandene Eingangsfrequenz ist. Es erfolgt keine Diagnose Meldung.

Signal Filterung:

Eine Glättung des Signal Jitter der gemessenen Frequenzwerte kann bei DIOM 9470/3x per Parametrierung gewählt werden. Zusätzlich erfolgt eine Impulsverlängerung für die zugehörigen DI Signale.

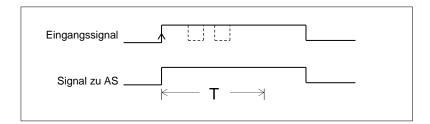
Parameter	Auswahl	Impulsverlängerung für DI Signale	Filterkonstante / Glättung für Frequenzmessungen
	0 s / Aus	0 s	Aus
Impulsverlängerung /	0,6 s / Klein	0,6 s	Klein
Frequenz Filter.	1,2 s / Mittel	1,2 s	Mittel
	2,4 s / Groß	2,4 s	Groß

Kopplungsbeschreibung EtherNet/IP

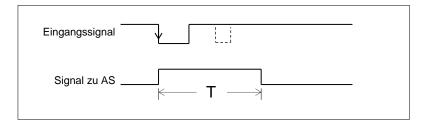

Impulsverlängerung:

Diese Funktion dient zum Verlängern von kurzen Impulsen. Damit kann z. B. eine kurze Betätigung eines manuellen Tasters (Zeitdauer ca. 10 ... 50 ms) auf eine bei der Parametrierung wählbare Zeit (T = 0,6 Sek., 1,2 Sek., 2,4 Sek.) verlängert werden.

Kurze Tasterbedienungen bzw. Pulse können damit vom AS auch bei langsameren Zykluszeiten der Anwendersoftware sicher erkannt werden.


Impulsverlängerung im nicht invertierten Betrieb:

(Parameter 'Invertiere Eingänge des Moduls'= Nein)


T = 0,6 Sek., 1,2 Sek., 2,4 Sek. (parametrierbar)

Pulse welche länger sind als die parametrierte Zeit T, werden nicht verlängert. Kurze Pulse während Ablauf der Zeit T werden unterdrückt.

Impulsverlängerung im invertierten Betrieb:

(Parameter 'Invertiere Eingänge des Moduls'= Ja)

Signalanzeige:

Bei DIOM mit Signal LEDs wird das verlängerte 'Signal zu AS' an den LEDs angezeigt.

Kopplungsbeschreibung EtherNet/IP

3.6.3 DOM (9475/.., 9477/.., 9478/..)

Datenstrukturen siehe Digital Output Module – DOM

Kopplungsbeschreibung EtherNet/IP

3.7 Signalverhalten im Fehlerfall

3.7.1 Verhalten der Eingabesignale im Fehlerfall

Kann durch eine Störung (Kurzschluss, Drahtbruch, Baugruppendefekt ...) kein gültiger Signalwert gebildet werden, so wird eine Diagnoseinformation erzeugt welche über die IS1 DTMs gelesen werden kann. Trotz bestehender Störung werden weiterhin zyklische Daten einschließlich Signal Stati zum AS übertragen. Das Verhalten der im Störfall übertragenen Signalwerte kann durch Parametrierung für jedes Modul separat gewählt werden (siehe <u>IO-Modul Parameter</u>).

Applikationsempfehlung:

Wird das Verhalten der Eingabesignale durch das IS1 System realisiert, so ist dieses Verhalten aus Sicht der Applikationssoftware im Automatisierungssystem jedoch nur bei ungestörtem Betrieb des EtherNet/IP gewährleistet.

Bei Ausfall der EtherNet/IP Kommunikation sind zusätzlich projektspezifische Reaktionen der Applikationssoftware zu realisieren.

Um ein durchgängiges Verhalten der Eingangssignale im Fehlerfall zu gewährleisten empfehlen wir folgendes Vorgehen:

Generieren eines Statussignales für jedes Eingabesignal im Automatisierungssystem:

- Bei DI Signalen sowie bei allen Signalen von IS1+ IO-Modulen (FW 03-xx) können optional die von IS1 zur Verfügung stehenden Signalstatus Bits im Input-Datenbereich verwendet werden. (siehe Datenwortaufbau der I/O Module)
- Bei Al Signalen kann optional das Verhalten 'Status Code' parametriert und in der Applikationssoftware in AS abgeprüft werden:

```
If SignalValue >= 32512 Or SignalValue <= -32512 then
SignalStatusBit = gestört

Else
SignalStatusBit = OK

End IF
```

Gesteuert über das jeweilige Statusbit können nun im Automatisierungssystem das Signalverhalten im Fehlerfall (Einfrieren, Ersatzwert ...) realisiert werden.

In diesem Fall kann das Ereignis 'Kommunikationsfehler auf EtherNet/IP' des EIP Adapters mit dem Signalstatus verknüpft werden wodurch das Signalverhalten im Fehlerfall unter allen Fehlerbedingungen immer gleich anspricht.

Optional kann zur Alarmierung von Output Modulen im AS ein Bit je Modul (Modul Sammelalarmbit) abgefragt werden um Meldungen zu erzeugen (siehe <u>Modul Status</u>). Details der Diagnoseinformation sind über die IS1 DTMs darstellbar.

Kopplungsbeschreibung EtherNet/IP

3.7.2 Verhalten der Ausgabesignale im Fehlerfall

Kommunikationsfehler zwischen Master und IS1+ Feldstation:

Der zyklische Datenverkehr zwischen EtherNet/IP Scanner und IS1+ (EtherNet/IP Adapter) wird in der IS1+ CPU geprüft.

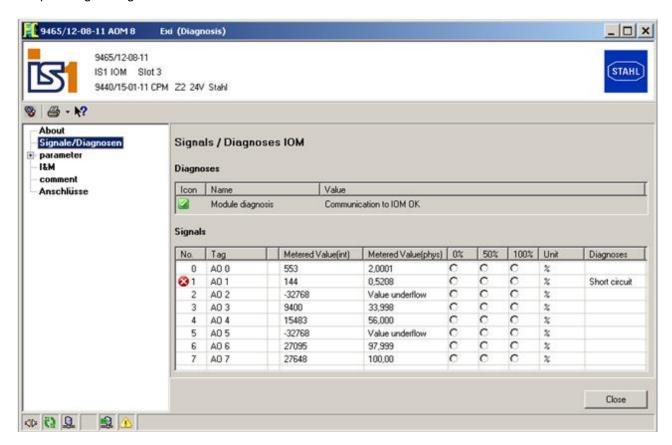
Beim Ausfall einer Exclusiv Owner Verbindung (EO) werden sämtliche Output Register der zugehörigen IO-Module in der IS1+ CPU auf 0x8000 gesetzt wodurch alle Ausgangssignale den sicheren Zustand einnehmen.

Über das Run/Idle Bit im Status Header (32Bit) werden die Ausgabebaugruppen im Zustand ´Idle´ nach Ablauf von T_{Mod} in den sicheren Zustand gebracht.

Kommunikationsfehler zwischen CPU und Output Modul:

Auf den Ausgabe Modulen befinden sich Watchdog - Schaltungen, welche die Datenübertragung zwischen der CPU und den Ausgabe Modulen überwachen. Bekommt ein Ausgabe Modul länger als T_{Mod} (Haltezeit Ausgabemodule) keine gültigen Daten übermittelt, geht die Baugruppe in Sicherheitsstellung. T_{Mod} ist parametrierbar im Bereich 100 ms bis 25,5 Sek. (Defaultwert: 1s).

Die Sicherheitsstellung der Ausgabesignale ist für jedes Modul separat parametrierbar (siehe <u>IO-Modul Parameter</u>).



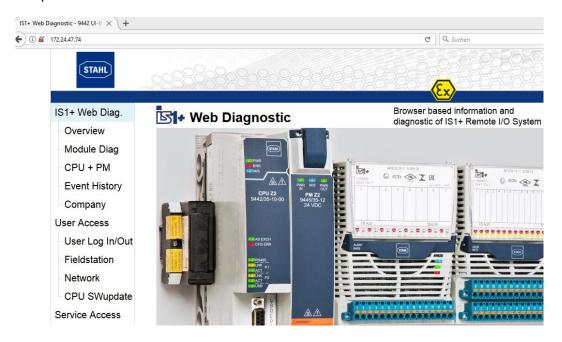
Kopplungsbeschreibung EtherNet/IP

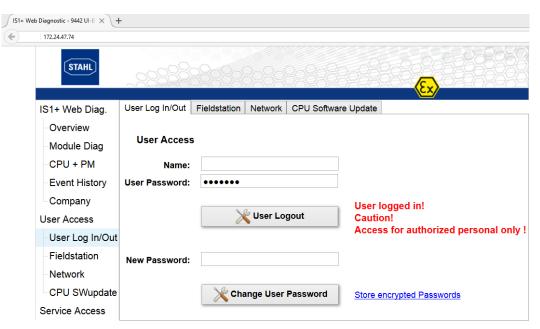
3.8 IS1 DTMs

Konfiguration, Parametrierung, Diagnose und HART Kommunikation der IS1+ Feldstation erfolgt über die IS1 DTMs mittels FDT Technologie.

Beispiel: Signaldiagnose

Weitere Informationen zur Anwendung der IS1 DTMs siehe Betriebsanleitung 'DTM IS1'.




Kopplungsbeschreibung EtherNet/IP

3.9 Webserver der IS1+ CPU

In den IS1+ CPUs ist ein Webserver integriert, welcher zusätzliche Diagnosemöglichkeiten für Inbetriebsetzung, Wartung und OEM Servicepersonal bietet. Ein Zugriff erfolgt über standard Web Browser.

Beispiele:

Kopplungsbeschreibung EtherNet/IP

Passwort und Zugangs-Konzept:

Die verschiedenen Menüpunkte des IS1+ Web Servers sind unterteilt in drei Gruppen:

Gruppe	Seite	Funktion
IS1+ Web Diagnostic		Standard Diagnose Informationen – Nur Read Rechte
User Access	User LogIn/Out Fieldstation Network CPU Software Update	Netzwerk Einstellungen und Software Update der CPU - Ohne User Passwort: Nur Read Rechte - Mit User Passwort: Read- und Write Recht wichtiger User Daten wie IP-Adresse, Device Name
Service Access	Service LogIn/Out	Service Informationen

User LogIn/Out

Das User Passwort ist per Default eingestellt auf: R.STAHL

Nach erfolgreichem User-Login ist es vom Anwender zu verändern.

Wurde das Passwort vergessen, so kann mittels der Funktion 'Store encrypted Passwords' eine Datei erzeugt werden, aus welcher der R.STAHL Service das eingestellte Passwort rücklesen kann. Damit ist ein Login möglich und das verwendete Passwort ist nachfolgend vom Anwender erneut zu ändern.

Kopplungsbeschreibung EtherNet/IP

3.10 Online Verhalten der IS1+ Feldstation.

3.10.1 Parameteränderungen.

Befindet sich eine IS1+ Feldstation im Data Exchange mit einem EtherNet/IP Scanner (Exclusiv Owner Verbindung), so können Parameter mittels der IS1 DTMs im Betrieb (online) verändert werden.

3.10.2 Konfigurationsänderungen.

Änderungen und Erweiterungen der Modulkonfiguration von IS1+ Feldstationen können online durchgeführt werden. Konfigurationsdaten können mit den IS1 DTMs in die CPU geladen werden während sich diese im Data Exchange mit einem EtherNet/IP Scanner befindet.

Voraussetzung für Online Modul Erweiterungen:

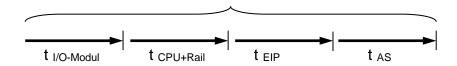
- Reserve muss bereits bei der Projektierung einer IS1+ Feldstation mit geplant worden sein.
- Es müssen noch freie Reserve Plätze auf der Rail einer IS1+ Feldstation vorhanden sein.
- Die Datenbereiche der Reserve Plätze müssen bereits zyklisch zum EtherNet/IP Scanner übertragen werden.

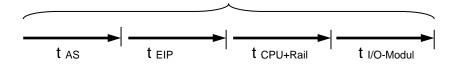
Die IS1+ CPU überprüft nach einem Download die real in der Feldstation vorhandenen Module (Istzustand) gegenüber den Konfigurationsdaten (Sollzustand). Alle Module der Feldstation welche mit den konfigurierten Modulen übereinstimmen werden nachfolgend wieder zyklisch aktualisiert. Module welche nicht mit den konfigurierten Modulen übereinstimmen werden alarmiert. Die Signale dieser Module werden nicht mehr aktualisiert und verhalten sich gemäß dem parametrierten Verhalten im Fehlerfall.

Dadurch bleiben die Signale nicht veränderter Module unverändert und stoßfrei im Data Exchange.

Ablauf einer Online Erweiterung:

- Neue Module (Erweiterung einer bestehenden IS1+ Feldstation) auf freie Railsteckplätze stecken.
- Neu gesteckte Module offline im FDT Frame hinzukonfigurieren.
- Online Download der Konfiguration in die CPU während EtherNet/IP in Betrieb.
- Erweiterung der SPS Software um die hinzugekommenen neuen Signale zu verwenden.




Kopplungsbeschreibung EtherNet/IP

3.11 Übertragungszeit:

Gesamtverzögerung Input Signale (worst case):

Gesamtverzögerung Output Signale (worst case):

t I/O-Modul max. Signalverzögerung siehe Betriebsanleitung der verschiedenen IS1 I/O Module.

t CPU+Rail ca. 4ms + Anzahl IOM * 1 ms

t EIP RPI (Requested Packet Interval) Einstellung am EIP Scanner

3.12 Technische Daten

RPI Requested Packet Interval (RPI) wird am EIP Scanner eingestellt.

9441 CPU:

Connection	CIP Connection size (TxRx) [Byte]	Max. Packets per second	Anzahl EIP Scanner je IS1 Feldstation		
			1 Scanner	2 Scanner	3 Scanner
			min. RPI [ms]		
4 – 8 IOM	70 - 134	125	8	16	24
12 - 16 IOM	198 - 262	100	10	20	30

9442 CPU: TBD

Kopplungsbeschreibung EtherNet/IP

4 Liste der Abkürzungen:

AS	Automatisierungssystem. (Automation System)	
AIM	Analog Eingabemodul (Analog Input Module)	
AIMH	Analog Eingabemodul + HART	
AUMH	Analog Universal Modul Al/AO mit HART	
SAIMH Safety Analog Eingabemodul + HART (PROFIsafe)		
AOM	Analog Ausgabemodul (Analog Output Module)	
AOMH	Analog Ausgabemodul + HART	
DIM	Digital Eingabemodul (Digital Input Module)	
DIOM	Digitales Ein-Ausgabe Modul (Digital Input Output Module)	
DOM	Digital Ausgabemodul (Digital Output Module)	
DOMR	Digital Output Modul Relais	
DOMV	Digital Output Modul Ventile	
HW	Hardware	
IOP	I/O - Prozessor der Zentraleinheit	
IOM	Allgemeine Bezeichnung für I/O - Modul	
PM	Power Module (Netzgerät)	
SW	Software	
SIL	Safety Integrity Level	
TIM	Temperatur Eingabemodul (Temperature Input Module)	

CIP™	Common Industrial Protocol	
ODVA	Open DeviceNet Vendor Association siehe www.odva.org	
RPI	Requested Packet Interval	
EtherNet/IP	EtherNet/IP stands for Ethernet Industrial Protocol. Products compliant with this specification as well as the CIP Common specification are known as EtherNet/IP products. [Source: RFC1392]	

Kopplungsbeschreibung EtherNet/IP

5 Versionsveränderungen:

Version Kopplungsbe- schreibung EtherNet/IP	Erweiterungen / Änderungen
V3.00_b12	Erste Release 9442 Z2 CPU mit EIP. Neuer Parameter PM 9445 Redundant zugefügt 9442 CPU Redundanz Unterstützung zugefügt

6 Literaturhinweise

Weitere Details zu den CIP Protokollen und EtherNet/IP finden Sie unter: http://www.odva.org/

7 Support Adresse

R. STAHL Schaltgeräte GmbH

Business Unit Automation Interface and Solutions

eMail: <u>support.automation@stahl.de</u>

Supportinformationen: http://www.stahl.de
Service Hotline IS1: +49 (7942) 943-4123
Telefax: +49 (7942) 943-40 4123